2022 journal article

Corrosion Performance of Additively Manufactured 316L Stainless Steel Produced By Feedstock Modification

ECS Meeting Abstracts.

co-author countries: United States of America πŸ‡ΊπŸ‡Έ
Source: ORCID
Added: May 21, 2023

Additive manufacturing (AM) is an emerging technology that can build 3d-component in a single step via the layer-by-layer process. Selective laser melting (SLM) is a popular powder bed fusion (PBF) – AM technique that involves rapid heating and cooling cycles with broad temperature gradients and complex thermal history. Moreover, the SLM components are often reported to have lower build densification due to stochastic porosity. The complex thermal cycles and stochastic porosity can negatively influence the corrosion performance of SLM printed 316L Stainless steel (SLM-316L) alloys. The corrosion performance of SLM-316L can be improved by optimizing the SLM processing parameters to improve the density and/or performing post-processing. However, post-processing increases the cost and time to deliver the components and is desired to avoid. Therefore, modifying the feedstock to increase corrosion resistance and therefore tolerance of the pores would help streamline the workflow and eliminate expensive post-manufacturing steps. In this research, the feedstock modification was conducted using ball milling of various additives and 316L powder. Corrosion performance of the SLM specimen was dependent on the additive used to modify the feedstock. Some of the additives imparted significantly improved corrosion performance, as evident from the high pitting and repassivation potentials and absence of metastable pitting. Observed corrosion performance was correlated with the microstructure which was studied using scanning and transmission electron microscopes. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry was used to study the surface film. Role of additives on microstructure and corrosion performance will be discussed.