2023 journal article
Collaborative Distributed Optimal Control of Pure and Hybrid Active Power Filters in Active Distribution Network
IEEE TRANSACTIONS ON POWER DELIVERY, 38(4), 2326–2337.
The high penetration of power electronics in the active distribution network (ADN) induces system-level voltage quality issues. Conventionally, pure and hybrid active power filters (APF/HAPF) have been adopted in ADN for voltage quality improvement. However, each APF/HAPF can only compensate for local voltage quality issues due to a lack of coordination. This paper proposes a collaborative distributed optimal control (CoDOC) of APFs/HAPFs for ADN system-level voltage quality improvement. First, the operational characteristic of APF/HAPF is discussed, which formulates the APF/HAPF constraints. Then, the objective functions, harmonic power flow equations, and APF/HAPF operational constraints are proposed to formulate the proposed CoDOC as a convex problem. Moreover, a primal-dual subgradient (PDS) based optimization algorithm is proposed to solve the CoDOC problem in a distributed manner. The practical application aspects of the proposed CoDOC are also studied and discussed. Finally, the proposed CoDOC is verified by case studies compared to other representative ADN-level control methods.