2019 journal article

Spatial Dependency of Glenohumeral Joint Stability During Dynamic Unimanual and Bimanual Pushing and Pulling

JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 141(5).

By: D. McFarland  n, E. McCain n, M. Poppo n & K. Saul n

co-author countries: United States of America πŸ‡ΊπŸ‡Έ
Source: Web Of Science
Added: April 15, 2019

Degenerative wear to the glenoid from repetitive loading can reduce effective concavity depth and lead to future instability. Workspace design should consider glenohumeral stability to prevent initial wear. While glenohumeral stability has been previously explored for activities of daily living including push-pull tasks, whether stability is spatially dependent is unexplored. We simulated bimanual and unimanual push-pull tasks to four horizontal targets (planes of elevation: 0 deg, 45 deg, 90 deg, and 135 deg) at 90 deg thoracohumeral elevation and three elevation targets (thoracohumeral elevations: 20 deg, 90 deg, 170 deg) at 90 deg plane of elevation. The 45 deg horizontal target was most stable regardless of exertion type and would be the ideal target placement when considering stability. This target is likely more stable because the applied load acts perpendicular to the glenoid, limiting shear force production. The 135 deg horizontal target was particularly unstable for unimanual pushing (143% less stable than the 45 deg target), and the applied force for this task acts parallel to the glenoid, likely creating shear forces or limiting compressive forces. Pushing was less stable than pulling (all targets except sagittal 170 deg for both task types and horizontal 45 deg for bimanual) (p < 0.01), which is consistent with prior reports. For example, unimanual pushing at the 90 deg horizontal target was 197% less stable than unimanual pulling. There were limited stability benefits to task placement for pushing, and larger stability benefits may be seen from converting tasks from push to pull rather than optimizing task layout. There was no difference in stability between bimanual and unimanual tasks, suggesting no stability benefit to bimanual operation.