2006 journal article

A new method to quantify radial error of a motorized end-milling cutter/spindle system at very high speed rotations

INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 46(7-8), 877–889.

By: W. Nakkiew, C. Lin & J. Tu

Source: Web Of Science
Added: August 6, 2018

The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. The spindle's radial error motions can be measured by mounting a sphere target onto the spindle as a reference. A set of sensors is used to measure displacements of the reference sphere in various directions to determine spindle error motions. This measurement technique can be reliably carried out when the spindle is at rest or at low rotational speeds. However, at very high speeds, the reference sphere must be carefully centered and balanced to avoid introducing additional error motions. In addition, the sensors must be held with very rigid mounts in order to avoid measurement errors caused by vibrations. For high-speed end milling spindles, the spindle is operated with a cutter. The cutter must be removed when mounting a reference sphere. Because the cutter itself can introduce errors due to centering and unbalancing effects, the error motions measured by the reference sphere method do not include the error caused by the cutter. This paper introduces a new and practical method to provide an indicator of the radial error of a motorized end-milling cutter/spindle system at very high speed rotations without the need of a reference sphere. This indicator of the radial error is based on the size of the cutting marks produced by the end mill, which is attached to the spindle. The cutting marks are circular, and their diameters are related to the radial error of the cutter/spindle system. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. This technique has been implemented in order to determine the effects of the spindle speed, the level of unbalanced mass, and the spindle stiffness on the cutter/spindle's radial error. The results reveal that the centrifugal force generated by the unbalanced mass is the main factor causing the increase in radial error. One way to compensate for the effect of unbalanced mass is to increase the spindle stiffness. Experimental results confirm that a higher front bearing preload can render the spindle stiffer, thus reducing the radial error of the cutter/spindle system. Finally, it should be pointed out that the proposed cutting mark measurement cannot replace the sphere method because it cannot provide time-resolved or angle-resolved information as those obtained from polar charts. However, the proposed cutting mark measurement can provide the characterization of the spindle with the cutter attached. As a result, both methods can complement each other to provide a more complete picture of the behavior of the cutter/spindle system at high speeds.