2020 journal article

Evaluation of the Precision and Accuracy of Cycle-Average Light Duty Gasoline Vehicles Tailpipe Emission Rates Predicted by Modal Models

TRANSPORTATION RESEARCH RECORD, 2674(7), 566–584.

co-author countries: United States of America πŸ‡ΊπŸ‡Έ
Source: Web Of Science
Added: July 20, 2020

A vehicle specific power (VSP) modal model and the MOtor Vehicle Emission Simulator (MOVES) Operating Mode (OpMode) model have been used to evaluate and quantify the fuel use and emission rates (FUERs) for on-road vehicles. These models bin second-by-second FUERs based on factors such as VSP, speed, and others. The validity of binning approaches depends on their precision and accuracy in predicting variability in cycle-average emission rates (CAERs). The objective is to quantify the precision and accuracy of the two modeling methods. Since 2008, North Carolina State University has used portable emission measurement systems to measure tailpipe emission rates for 214 light duty gasoline vehicles on 1,677 driving cycles, including 839 outbound cycles and 838 inbound cycles on the same routes. These vehicles represent a wide range of characteristics and emission standards. For each vehicle, the models were calibrated based on outbound cycles and were validated based on inbound cycles. The goodness-of-fit of the calibrated models was assessed using linear least squares regression without intercept between model-predicted versus empirical CAERs for individual vehicles. Based on model calibration and validation, the coefficients of determination ( R 2 ) typically range from 0.60 to 0.97 depending on the vehicle group and pollutant, indicating moderate to high precision, with precision typically higher for higher-emitting vehicle groups. The slopes of parity plots for each vehicle group and all vehicles typically range from 0.90 to 1.10, indicating good accuracy. The two modeling approaches are similar to each other at the microscopic and macroscopic levels.