2021 journal article

Soil ingestion among young children in rural Bangladesh

JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 31(1), 82–93.

co-author countries: Bangladesh 🇧🇩 United States of America 🇺🇸
author keywords: Soil; Dust; Geophagia; Bangladesh; Extraction efficiency
MeSH headings : Bangladesh; Child; Child, Preschool; Eating; Environmental Exposure / analysis; Humans; Infant; Mouth; Soil
Source: Web Of Science
Added: February 8, 2021

Ingestion of soil and dust is a pathway of children’s exposure to several environmental contaminants, including lead, pesticides, and fecal contamination. Empirically based estimates of central tendency for soil consumption by children in high-income countries range from 9 to 135 dry mg/day. Using a Monte Carlo simulation, we modeled the mass of soil directly and indirectly ingested per day by rural Bangladeshi children and identified the parameters that influence the mass ingested. We combined data from observations of direct and indirect ingestion among children with measurements of soil mass on the children’s hands, mother’s hands, and objects to quantify soil ingestion/day. Estimated geometric mean soil ingestion was 162 dry mg/day for children 3–5 months, 224 dry mg/day for children 6–11 months, 234 dry mg/day for children 12–23 months, 168 dry mg/day for children 24–35 months, and 178 dry mg/day for children 36–47 months old. Across all age groups, children placing their hands in their mouths accounted for 46–78% of total ingestion and mouthing objects contributed 8–12%. Direct ingestion of soil accounted for nearly 40% of soil ingested among children 6–23 months old. Sensitivity analyses identified that the parameters most affecting the estimates were the load of soil on the child’s hand, the frequency of hand-to-mouth contacts while not eating, and, for children 6–23 months old, the frequency of direct soil ingestion. In a rural, low-income setting, children’s soil consumption was substantially more than the estimates for children in high-income countries. Further characterizing soil ingestion of children in low-income contexts would improve assessments of the risks they face from soil-associated contaminants.