2021 journal article

On the characteristics of N-polar GaN Schottky barrier contacts with LPCVD SiN interlayers

APPLIED PHYSICS LETTERS, 118(12).

co-author countries: United States of America 🇺🇸
Source: Web Of Science
Added: April 5, 2021

We study the behavior of N-polar GaN Schottky diodes with low-pressure chemical vapor deposited (LPCVD) SiN interlayers and unveil the important role of an amphoteric miniband formed in this interlayer due to a previously identified and dominating Si dangling bond defect. Through analysis of temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V), and x-ray photoelectron spectroscopy measurements, we observe that when nickel is deposited on LPCVD SiN pretreated with hydrofluoric acid, the SiN/GaN interface is responsible for determining the overall system's barrier height. By contrast, contact formation on oxidized LPCVD SiN leads to a metal/SiN-dominant barrier. We, consequently, propose band diagrams that account for an amphoteric miniband in LPCVD SiN, leading to a new understanding of LPCVD SiN as a lossy dielectric with surface barrier-dependent behavior.