2016 journal article

Designing unit cell in three-dimensional periodic nanostructures using colloidal lithography

OPTICS EXPRESS, 24(2), A276–A284.

Source: Web Of Science
Added: August 6, 2018

Colloidal phase-shift lithography, the illumination of a two-dimensional (2D) ordered array of self-assembled colloidal nanospheres, is an effective method for the fabrication of periodic three-dimensional (3D) nanostructures. In this work, we investigate the design and control of the unit-cell geometry by examining the relative ratio of the illumination wavelength and colloidal nanosphere diameter. Using analytical and finite-difference time-domain (FDTD) modeling, we examine the effect of the wavelength-diameter ratio on intensity pattern, lattice constants, and unit-cell geometry. These models were validated by experimental fabrication for various combination of wavelength and colloid diameter. The developed models and fabrication tools can facilitate the design and engineering of 3D periodic nanostructure for photonic crystals, volumetric electrodes, and porous materials.