2022 journal article

Structure-Performance Relationships of Li-Ion Battery Fiber-Based Separators

ACS APPLIED POLYMER MATERIALS, 4(5), 3676–3686.

co-author countries: United States of America 🇺🇸
author keywords: meltblown; electrospun; shear; PVDF; nonwoven; separator; batteries
Source: Web Of Science
Added: June 27, 2022

Lithium-ion battery separators are receiving increased consideration from the scientific community. Many research efforts trend toward creating high-performance fiber-based battery separators with a small and uniform pore size to maximize ionic conductivity and cell discharge capacity. Here, we show that not only the pore size but also the pore size distribution has an important effect on these electrochemical properties. In this work, we studied nonwoven membranes fabricated from a single polymer, poly(vinylidene fluoride) (PVDF), with different pore sizes and pore size distributions using three different techniques (meltblowing, electrospinning, and shear spinning). We evaluate their performance as separators in Li-ion cells. Although meltblowing is commonly employed to produce commercial microfibers/nanofibers, electrospinning has been studied mostly in the academic literature. Shear spinning is an emerging method to fabricate nanofibrous material where, for this study, the morphology of the resulting PVDF membranes may be controlled from fibrous-like to nano-sheet-like with subsequent effects on the electrochemical properties. We show that the smaller the pore size and the wider the pore size distribution, the higher are the electrolyte uptake and ionic conductivity of the mats, resulting in improved in-use discharge capacity and rate capability of Li/LiCoO2 cells.