2022 journal article

Environmental and Plant-Derived Controls on the Seasonality and Partitioning of Soil Respiration in an American Sycamore (Platanus occidentalis) Bioenergy Plantation Grown at Different Planting Densities

FORESTS, 13(8).

By: S. Morkoc*, M. Aguilos n, A. Noormets*, K. Minick*, O. Ile n, D. Dickey n, D. Hardesty n, M. Kerrigan n, J. Heitman n, J. King n

co-author countries: Türkiye 🇹🇷 United States of America 🇺🇸
author keywords: soil CO2 efflux; heterotrophic respiration; autotrophic respiration; short-rotation woody crops; planting density; soil temperature; soil water content
Source: Web Of Science
Added: September 6, 2022

Bioenergy is one of the most considered alternatives to fossil fuels. Short-rotation woody crops (SRWCs) as bioenergy sources are capable of alleviating energy constraints and sequestering atmospheric CO2. However, studies investigating soil carbon (C) dynamics at SWRC plantations are scarce. We studied American sycamore (Platanus occidentalis) as a model tree species for SRWC at different planting densities ((1) 0.5 × 2.0 m (10,000 trees·ha−1 or tph), (2) 1.0 × 2.0 m (5000 tph), and (3) 2.0 × 2.0 m (2500 tph)) to examine seasonal variation in total soil respiration (Rtotal), partitioned into heterotrophic (Rh) and autotrophic (Ra) respiration, and we evaluated climatic and biological controls on soil respiration. Rtotal and Rh exhibited larger seasonal variation than Ra (p < 0.05). During the nongrowing seasons, the average Rtotal was 0.60 ± 0.21 g·C·m−2·day−1 in winter and 1.41 ± 0.73 g·C·m−2·day−1 in fall. During the growing season, Rtotal was 2–7 times higher in spring (3.49 ± 1.44 g·C·m−2·day−1) and summer (4.01 ± 1.17 g·C·m−2·day−1) than winter. Average Rtotal was 2.30 ± 0.63 g·C·m−2·day−1 in 2500 tph, 2.43 ± 0.64 g·C·m−2·day−1 in 5000 tph, and 2.41 ± 0.75 g·C·m−2·day−1 in 10,000 tph treatments. Average Rh was 1.72 ± 0.40 g·C·m−2·day−1 in 2500 tph, 1.57 ± 0.39 g·C·m−2·day−1 in 5000 tph, and 1.93 ± 0.64 g·C·m−2·day−1 in 10,000 tph, whereas Ra had the lowest rates, with 0.59 ± 0.53 g·C·m−2·day−1 in 2500 tph, 0.86 ± 0.51 g·C·m−2·d−1 in 5000 tph, and 0.48 ± 0.34 g·C·m−2·day−1 in 10,000 tph treatments. Rh had a greater contribution to Rtotal (63%–80%) compared to Ra (20%–37%). Soil temperature was highly correlated to Rtotal (R2 = 0.92) and Rh (R2 = 0.77), while the correlation to Ra was weak (R2 = 0.21). Rtotal, Rh, and Ra significantly declined with soil water content extremes (e.g., <20% or >50%). Total root biomass in winter (469 ± 127 g·C·m−2) was smaller than in summer (616 ± 161 g·C·m−2), and the relationship of total root biomass to Rtotal, Rh, and Ra was only significant during the growing seasons (R2 = 0.12 to 0.50). The litterfall in 5000 tph (121 ± 16 g DW·m−2) did not differ (p > 0.05) from the 2500 tph (108 ± 16 g DW·m−2) or 10,000 tph (132 ± 16 g DW·m−2) treatments. In no circumstances were Rtotal, Rh, and Ra significantly correlated with litterfall amount across planting densities and seasons (p > 0.05). Overall, our results show that Rtotal in American sycamore SRWC is dominated by the heterotrophic component (Rh), is strongly correlated to soil environmental conditions, and can be minimized by planting at a certain tree density (5000 tph).