2019 journal article

Evoked Haptic Sensation in the Hand With Concurrent Non-Invasive Nerve Stimulation

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 66(10), 2761–2767.

By: L. Vargas n, G. Whitehouse n, H. Huang n , Y. Zhu n & X. Hu n

co-author countries: United States of America πŸ‡ΊπŸ‡Έ
author keywords: Electrical stimulation; haptic sensation; transcutaneous nerve stimulation; embodiment
MeSH headings : Adult; Amputees; Arm / innervation; Artificial Limbs; Female; Humans; Male; Sensory Thresholds / physiology; Transcutaneous Electric Nerve Stimulation
Source: Web Of Science
Added: October 14, 2019

Haptic perception is critical for prosthetic users to control their prosthetic hand intuitively. In this study, we seek to evaluate the haptic perception evoked from concurrent stimulation trains through multiple channels using transcutaneous nerve stimulation.A 2 Γ— 8 electrode grid was used to deliver current to the median and ulnar nerves in the upper arm. Different electrodes were first selected to activate the sensory axons, which can elicit sensations at different locations of the hand. Charge-balanced bipolar stimulation was then delivered to two sets of electrodes concurrently with a phase delay (dual stimulation) to determine whether the evoked sensation can be constructed from sensations of single stimulation delivered separately at different locations (single stimulation) along the electrode grid. The temporal delay between the two stimulation trains was altered to evaluate potential interference. The short-term stability of the haptic sensation within a testing session was also evaluated.The evoked sensation during dual stimulation was largely a direct summation of the sensation from single stimulations. The delay between the two stimulation locations had minimal effect on the evoked sensations, which was also stable over repeated testing within a session.Our results indicated that the haptic sensations at different regions of the hand can be constructed by combining the response from multiple stimulation trains directly. The interference between stimulations were minimal.The outcomes will allow us to construct specific haptic sensation patterns when the prosthesis interacts with different objects, which may help improve user embodiment of the prosthesis.