2019 journal article
The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes
PLOS ONE, 14(10).
Radopholus similis, commonly known as the burrowing nematode, is an important pest of myriad crops and ornamentals including banana (Musa spp.) and Citrus spp. In order to characterize the potential role of putative effectors encoded by R. similis genes we compared predicted proteins from a draft R. similis genome with other plant-parasitic nematodes in order to define the suite of excreted/secreted proteins that enable it to function as a parasite and to ascertain the phylogenetic position of R. similis in the Tylenchida order. Identification and analysis of candidate genes encoding for key plant cell-wall degrading enzymes including GH5 cellulases, PL3 pectate lyases and GH28 polygalactouranase revealed a pattern of occurrence similar to other PPNs, although with closest phylogenetic associations to the sedentary cyst nematodes. We also observed the absence of a suite of effectors essential for feeding site formation in the cyst nematodes. Clustering of various orthologous genes shared by R. similis with other nematodes showed higher overlap with the cyst nematodes than with the root-knot or other migratory endoparasitic nematodes. The data presented here support the hypothesis that R. similis is evolutionarily closer to the cyst nematodes, however, differences in the effector repertoire delineate ancient divergence of parasitism, probably as a consequence of niche specialization. These similarities and differences further underscore distinct evolutionary relationships during the evolution of parasitism in this group of nematodes.