2021 journal article

Assessment of AMBER Force Fields for Simulations of ssDNA

Journal of Chemical Theory and Computation, 17(2), 1208–1217.

By: T. Oweida n, H. Kim n, J. Donald n, A. Singh n & Y. Yingling

Source: ORCID
Added: January 15, 2021

Single-stranded DNA (ssDNA) plays an important role in biological processes and is used in DNA nanotechnology and other novel applications. Many important research questions can be addressed with molecular simulations of ssDNA molecules; however, no dedicated force field for ssDNA has been developed, and there is limited experimental information about ssDNA structures. This study assesses the accuracy and applicability of existing Amber force fields for all-atom simulations of ssDNA, such as ff99, bsc0, bsc1, and OL15, in implicit and explicit solvents via comparison to available experimental data, such as Forster resonance energy transfer and small angle X-ray scattering. We observed that some force fields agree better with experiments than others mainly due to the difference in parameterization of the propensity for hydrogen bonding and base stacking. Overall, the Amber ff99 force field in the IGB5 or IGB8 implicit solvent and the bsc1 force field in the explicit TIP3P solvent had the best agreement with experiment.