@article{ranjan_yu_nakhmanson_bernholc_nardelli_2010, title={Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers}, volume={66}, ISSN={["2053-2733"]}, DOI={10.1107/s0108767310026358}, abstractNote={Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar alpha and polar beta phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the beta phase, whereas the alpha phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations (< or = 12%) undergo a transition from the alpha to the beta phase until a breakdown field of approximately 600 MV m(-1) is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.}, journal={ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES}, author={Ranjan, V. and Yu, L. and Nakhmanson, Serge and Bernholc, Jerry and Nardelli, M. Buongiorno}, year={2010}, month={Sep}, pages={553–557} } @article{saha_lu_bernholc_meunier_2009, title={First-principles methodology for quantum transport in multiterminal junctions}, volume={131}, ISSN={0021-9606 1089-7690}, url={http://dx.doi.org/10.1063/1.3247880}, DOI={10.1063/1.3247880}, abstractNote={We present a generalized approach for computing electron conductance and I-V characteristics in multiterminal junctions from first-principles. Within the framework of Keldysh theory, electron transmission is evaluated employing an O(N) method for electronic-structure calculations. The nonequilibrium Green function for the nonequilibrium electron density of the multiterminal junction is computed self-consistently by solving Poisson equation after applying a realistic bias. We illustrate the suitability of the method on two examples of four-terminal systems, a radialene molecule connected to carbon chains and two crossed-carbon chains brought together closer and closer. We describe charge density, potential profile, and transmission of electrons between any two terminals. Finally, we discuss the applicability of this technique to study complex electronic devices.}, number={16}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Saha, Kamal K. and Lu, Wenchang and Bernholc, J. and Meunier, Vincent}, year={2009}, month={Oct}, pages={164105} } @article{yu_ranjan_lu_bernholc_nardelli_2008, title={Equivalence of dipole correction and Coulomb cutoff techniques in supercell calculations}, volume={77}, ISSN={["1098-0121"]}, DOI={10.1103/physrevb.77.245102}, abstractNote={Article on the equivalence of dipole correction and Coulomb cutoff techniques in supercell calculations. In this work, the authors compare the dipole correction and Coulomb cutoff methods under the same conditions in the framework of plane-wave based density-functional theory.}, number={24}, journal={PHYSICAL REVIEW B}, author={Yu, Liping and Ranjan, V. and Lu, W. and Bernholc, J. and Nardelli, M. Buongiorno}, year={2008}, month={Jun} }