@article{west_richardson_gardner_hoyle_2011, title={Bushkiller (Cayratia japonica) Response to Selected Herbicides}, volume={4}, ISSN={["1939-747X"]}, DOI={10.1614/ipsm-d-10-00038.1}, abstractNote={AbstractBushkiller, an aggressive perennial vine native to Southeast Asia, has invaded several sites in Alabama, North Carolina, Texas, Louisiana, and Mississippi. Bushkiller has only recently been discovered in North Carolina. The potential economic and environmental consequences associated with established exotic invasive perennial vines and the lack of published control measures for bushkiller prompted research to be conducted at North Carolina State University that may be used in an early-detection rapid-response program. Field and greenhouse studies were conducted to determine bushkiller response to selected foliar-applied herbicides. Field study 1 evaluated efficacy of glyphosate, triclopyr, triclopyr plus 2,4-D, triclopyr plus aminopyralid, and triclopyr plus glyphosate applied postemergence to bushkiller. No control was evident from any treatment at 10 mo after application. In a separate experiment, aminocyclopyrachlor, imazapyr, metsulfuron, sulfometuron, and sulfometuron plus metsulfuron were applied postemergence to bushkiller. Control with aminocyclopyrachlor, imazapyr, sulfometuron, and sulfometuron plus metsulfuron was 88 to 99% at 10 mo after application. Each treatment was also applied to bushkiller in a greenhouse trial. Aminocyclopyrachlor and triclopyr-containing treatments generally resulted in the greatest control, lowest dry weights, and shortest vine lengths among the treatments. These results indicate that several herbicides may be employed initially in an early-detection, rapid-response program for bushkiller. Additional research is needed to determine how effective these herbicides would be in multiple-season treatments that may be required at well established bushkiller infestation sites.}, number={1}, journal={INVASIVE PLANT SCIENCE AND MANAGEMENT}, author={West, Amanda M. and Richardson, Robert J. and Gardner, Andrew P. and Hoyle, Steve T.}, year={2011}, pages={73–77} } @article{weisz_cowger_ambrose_gardner_2011, title={Multiple Mid-Atlantic Field Experiments Show No Economic Benefit to Fungicide Application When Fungal Disease Is Absent in Winter Wheat}, volume={101}, ISSN={["0031-949X"]}, DOI={10.1094/phyto-03-10-0096}, abstractNote={ Strobilurin fungicides produce intensified greening and delayed senescence in plants, and have been claimed to enhance yields of field crops in the absence of disease. To help evaluate this claim, available publicly sponsored tests of fungicides on soft red winter wheat in Virginia and North Carolina (n = 42) were analyzed for the period 1994 to 2010. All tests were replicated and had a randomized complete block, split-plot, or split-block design. Each test included 1 to 32 cultivars and one to five fungicides (two strobilurins, one triazole, and two strobilurin-triazole mixtures). There was a total of 311 test–cultivar–fungicide treatment comparisons, where a comparison was the reported yield difference between sprayed and unsprayed treatments of a given cultivar in a given test. Parameters used to calculate the economic benefit or loss associated with fungicide application included a grain price range of $73.49 to 257.21 Mg–1 ($2 to 7 bu–1), a total fungicide application cost of $24.71 to 74.13 ha–1 ($10 to 30 acre–1), and a 0.14 to 0.21 Mg ha–1 (2.3 to 3.4 bu acre–1) loss in yield from driving over wheat during application (with a sprayer 27.4 or 18.3 m [90 or 60 feet] wide, respectively). The yield increase needed to pay for a fungicide application at each combination of cost and price was calculated, and the cumulative probability function for the fungicide yield-response data was modeled. The model was used to predict the probability of achieving a break-even yield, and the probabilities were graphed against each cost–price combination. Tests were categorized as “no-disease” or “diseased” based on reports of the researchers rating the tests. Subsets of the data were analyzed to assess the profitability of the triazole fungicide and the strobilurin-containing fungicides separately in no-disease versus diseased experiments. From the results, it was concluded that, with routine fungicide application based solely on wheat growth stage, total fungicide application costs had to be <$24.71 ha–1 ($10 acre–1) in order to average a ≥50% probability of breaking even or making a profit (compared with not spraying). By contrast, if fungicides were applied when fungal disease was present, total application costs of ≤$47 ha–1 ($19 acre–1) for strobilurins and ≤$72 ha–1 ($29 acre–1) for propiconazole alone were associated with a ≥50% probability of breaking even or making a profit at a wheat price of $184 Mg–1. The results do not support the application of strobilurin or triazole fungicides to mid-Atlantic wheat crops for “plant health” in the absence of disease. Rather, they support basing the decision to apply fungicide on observation of disease, if an economic return for the input is desired. }, number={3}, journal={PHYTOPATHOLOGY}, author={Weisz, Randy and Cowger, Christina and Ambrose, Gaylon and Gardner, Andrew}, year={2011}, month={Mar}, pages={323–333} } @article{richardson_roten_west_true_gardner_2008, title={Response of selected aquatic invasive weeds to Flumioxazin and Carfentrazone-ethyl}, volume={46}, journal={Journal of Aquatic Plant Management}, author={Richardson, R. J. and Roten, R. L. and West, A. M. and True, S. L. and Gardner, A. P.}, year={2008}, pages={154–158} } @article{gardner_york_jordan_monks_2006, title={Glufosinate antagonizes postemergence graminicides applied to annual grasses and johnsongrass}, volume={10}, ISBN={1524-3303}, number={4}, journal={Journal of Cotton Science (Online)}, author={Gardner, A. P. and York, A. C. and Jordan, D. L. and Monks, D. W.}, year={2006}, pages={319} } @article{gardner_york_jordan_monks_2006, title={Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton}, volume={10}, ISBN={1524-3303}, number={4}, journal={Journal of Cotton Science (Online)}, author={Gardner, A. P. and York, A. C. and Jordan, D. L. and Monks, D. W.}, year={2006}, pages={328} }