@article{peng_gong_vangundy_parsons_2009, title={"Zincone" Zinc Oxide-Organic Hybrid Polymer Thin Films Formed by Molecular Layer Deposition}, volume={21}, ISSN={["1520-5002"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000263891700009&KeyUID=WOS:000263891700009}, DOI={10.1021/cm8020403}, abstractNote={Hybrid organic−inorganic polymer thin films of the form (−O−Zn−O−C2H4−)n have been deposited from diethyl zinc and ethylene glycol using molecular layer deposition (MLD) over a range of substrate temperatures between 100 and 170 °C. Infrared transmission confirms that the films consist of Zn−O and ethylene-oxide units. In analogy with known alucone polymers of the form (−O−Al−O−R−)n, the zinc-based hybrid material is an example of a “zincone” polymer. In situ quartz crystal microbalance analysis indicated that the sequential surface reactions of diethyl zinc and ethylene glycol are sufficiently self-limiting and saturating to enable well-controlled MLD growth. Quantitative analysis of in situ quartz crystal microbalance and film thickness results indicate that ethylene glycol molecules can undergo a “double reaction” where the OH groups on both ends of the diol react with available Zn−C2H5 surface sites to produce a relatively inert bridging alkane. The mass uptake per MLD cycle during Zn−hybrid film depo...}, number={5}, journal={CHEMISTRY OF MATERIALS}, author={Peng, Qing and Gong, Bo and VanGundy, Ryan M. and Parsons, Gregory N.}, year={2009}, month={Mar}, pages={820–830} }