Works (1)

Updated: July 12th, 2023 21:15

2009 journal article

FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain

DEVELOPMENT, 136(23), 4021–4031.

author keywords: Subventricular zone; Adult stem cell niche; Ependymal cells; Astrocytes; FoxJ1; Mouse
MeSH headings : Animals; Astrocytes / cytology; Astrocytes / metabolism; Astrocytes / ultrastructure; Brain / cytology; Brain / metabolism; Cell Differentiation / physiology; Cells, Cultured; Ependyma / cytology; Ependyma / metabolism; Ependyma / ultrastructure; Fluorescent Antibody Technique, Direct; Forkhead Transcription Factors / genetics; Forkhead Transcription Factors / metabolism; Gene Expression; Immunohistochemistry; In Situ Hybridization; Mice; Mice, Knockout; Neuroglia / cytology; Neuroglia / physiology; Neuroglia / ultrastructure
TL;DR: It is suggested that time- and cell-specific expression of FoxJ1 in the brain acts on an array of target genes to regulate the differentiation of ependymal cells and a small subset of astrocytes in the adult stem cell niche. (via Semantic Scholar)
Source: Web Of Science
Added: August 6, 2018

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.