@article{shockley_scott_pysz_conners_johnson_montero_wolfinger_kelly_2005, title={Genorne-wide transcriptional variation within and between steady states for continuous growth of the hyperthermophile Thermotoga maritima}, volume={71}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.71.9.5572-5576.2005}, abstractNote={ABSTRACTMaltose-limited, continuous growth of the hyperthermophileThermotoga maritimaat different temperatures and dilution rates (80°C/0.25 h−1, 80°C/0.17 h−1, and 85°C/0.25 h−1) showed that transcriptome-wide variation in gene expression within mechanical steady states was minimal compared to that between steady states, supporting the efficacy of chemostat-based approaches for functional genomics studies.}, number={9}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Shockley, KR and Scott, KL and Pysz, MA and Conners, SB and Johnson, MR and Montero, CI and Wolfinger, RD and Kelly, RM}, year={2005}, month={Sep}, pages={5572–5576} } @article{johnson_montero_conners_shockley_pysz_kelly_2004, title={Functional genomics-based studies of the microbial ecology of hyperthermophilic micro-organisms}, volume={32}, ISSN={["1470-8752"]}, DOI={10.1042/BST0320188}, abstractNote={Although much attention has been paid to the genetic, biochemical and physiological aspects of individual hyperthermophiles, how these unique micro-organisms relate to each other and to their natural habitats must be addressed in order to develop a comprehensive understanding of life at high temperatures. Phylogenetic 16 S rRNA-based profiling of samples from various geothermal sites has provided insights into community structure, but this must be complemented with efforts to relate metabolic strategies to biotic and abiotic characteristics in high-temperature habitats. Described here are functional genomics-based approaches, using cDNA microarrays, to gain insight into how ecological features such as biofilm formation, species interaction, and possibly even gene transfer may occur in native environments, as well as to determine what genes or sets of genes may be tied to environmental functionality.}, number={2004 Apr}, journal={BIOCHEMICAL SOCIETY TRANSACTIONS}, author={Johnson, MR and Montero, CI and Conners, SB and Shockley, KR and Pysz, MA and Kelly, RM}, year={2004}, month={Apr}, pages={188–192} } @misc{pysz_conners_montero_shockley_johnson_ward_kelly_2004, title={Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima}, volume={70}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.70.10.6098-6112.2004}, abstractNote={ABSTRACTThermotoga maritima, a fermentative, anaerobic, hyperthermophilic bacterium, was found to attach to bioreactor glass walls, nylon mesh, and polycarbonate filters during chemostat cultivation on maltose-based media at 80°C. A whole-genome cDNA microarray was used to examine differential expression patterns between biofilm and planktonic populations. Mixed-model statistical analysis revealed differential expression (twofold or more) of 114 open reading frames in sessile cells (6% of the genome), over a third of which were initially annotated as hypothetical proteins in theT. maritimagenome. Among the previously annotated genes in theT. maritimagenome, which showed expression changes during biofilm growth, were several that corresponded to biofilm formation genes identified in mesophilic bacteria (i.e.,Pseudomonasspecies,Escherichia coli, andStaphylococcus epidermidis). Most notably,T. maritimabiofilm-bound cells exhibited increased transcription of genes involved in iron and sulfur transport, as well as in biosynthesis of cysteine, thiamine, NAD, and isoprenoid side chains of quinones. These findings were all consistent with the up-regulation of iron-sulfur cluster assembly and repair functions in biofilm cells. Significant up-regulation of several β-specific glycosidases was also noted in biofilm cells, despite the fact that maltose was the primary carbon source fed to the chemostat. The reasons for increased β-glycosidase levels are unclear but are likely related to the processing of biofilm-based polysaccharides. In addition to revealing insights into the phenotype of sessileT. maritimacommunities, the methodology developed here can be extended to study other anaerobic biofilm formation processes as well as to examine aspects of microbial ecology in hydrothermal environments.}, number={10}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Pysz, MA and Conners, SB and Montero, CI and Shockley, KR and Johnson, MR and Ward, DE and Kelly, RA}, year={2004}, month={Oct}, pages={6098–6112} } @article{pysz_ward_shockley_montero_conners_johnson_kelly_2004, title={Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima}, volume={8}, ISSN={["1433-4909"]}, DOI={10.1007/s00792-004-0379-2}, abstractNote={The thermal stress response of the hyperthermophilic bacterium Thermotoga maritima was characterized using a 407-open reading frame-targeted cDNA microarray. Transient gene expression was followed for 90 min, following a shift from 80 degrees C to 90 degrees C. While some aspects of mesophilic heat-shock response were conserved in T. maritima, genome content suggested differentiating features that were borne out by transcriptional analysis. Early induction of predicted heat-shock operons hrcA-grpE-dnaJ (TM0851-TM0850-TM0849), groES-groEL (TM0505-TM0506), and dnaK-sHSP (TM0373-TM0374) was consistent with conserved CIRCE elements upstream of hrcA and groES. Induction of the T. maritima rpoE/ sigW and rpoD/ sigA homologs suggests a mechanism for global heat-shock response in the absence of an identifiable ortholog to a major heat-shock sigma factor. In contrast to heat-shock response in Escherichia coli, the majority of genes encoding ATP-dependent proteases were downregulated, including clpP (TM0695), clpQ (TM0521), clpY (TM0522), lonA (TM1633), and lonB (TM1869). Notably, T. maritima showed indications of a late heat-shock response with the induction of a marR homolog (TM0816), several other putative transcriptional regulators (TM1023, TM1069), and two alpha-glucosidases (TM0434 and TM1068). Taken together, the results reported here indicate that, while T. maritima shares core elements of the bacterial heat-shock response with mesophiles, the thermal stress regulatory strategies of this organism differ significantly. However, it remains to be elucidated whether these differences are related to thermophilicity or phylogenetic placement.}, number={3}, journal={EXTREMOPHILES}, author={Pysz, MA and Ward, DE and Shockley, KR and Montero, CI and Conners, SB and Johnson, MR and Kelly, RM}, year={2004}, month={Jun}, pages={209–217} } @article{gao_bauer_shockley_pysz_kelly_2003, title={Growth of hyperthermophilic Archaeon Pyrococcus futiosus on chitin involves two family 18 chitinases}, volume={69}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.69.6.3119-3128.2003}, abstractNote={ABSTRACT Pyrococcus furiosus was found to grow on chitin, adding this polysacharide to the inventory of carbohydrates utilized by this hyperthermophilic archaeon. Accordingly, two open reading frames ( chiA [Pf1234] and chiB [Pf1233]) were identified in the genome of P. furiosus , which encodes chitinases with sequence similarity to proteins from the glycosyl hydrolase family 18 in less-thermophilic organisms. Both enzymes contain multiple domains that consist of at least one binding domain and one catalytic domain. ChiA (ca. 39 kDa) contains a putative signal peptide, as well as a binding domain (ChiA BD ), that is related to binding domains associated with several previously studied bacterial chitinases. chiB , separated by 37 nucleotides from chiA and in the same orientation, encodes a polypeptide with two different proline-threonine-rich linker regions (6 and 3 kDa) flanking a chitin-binding domain (ChiB BD [11 kDa]), followed by a catalytic domain (ChiB cat [35 kDa]). No apparent signal peptide is encoded within chiB . The two chitinases share little sequence homology to each other, except in the catalytic region, where both have the catalytic glutamic acid residue that is conserved in all family 18 bacterial chitinases. The genes encoding ChiA, without its signal peptide, and ChiB were cloned and expressed in Escherichia coli. ChiA exhibited no detectable activity toward chitooligomers smaller than chitotetraose, indicating that the enzyme is an endochitinase. Kinetic studies showed that ChiB followed Michaelis-Menten kinetics toward chitotriose, although substrate inhibition was observed for larger chitooligomers. Hydrolysis patterns on chitooligosaccharides indicated that ChiB is a chitobiosidase, processively cleaving off chitobiose from the nonreducing end of chitin or other chitooligomers. Synergistic activity was noted for the two chitinases on colloidal chitin, indicating that these two enzymes work together to recruit chitin-based substrates for P. furiosus growth. This was supported by the observed growth on chitin as the sole carbohydrate source in sulfur-free media. }, number={6}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Gao, J and Bauer, MW and Shockley, KR and Pysz, MA and Kelly, RM}, year={2003}, month={Jun}, pages={3119–3128} } @article{burke_ha_pysz_khan_2002, title={Rheology of protein gels synthesized through a combined enzymatic and heat treatment method}, volume={31}, ISSN={["0141-8130"]}, DOI={10.1016/S0141-8130(02)00043-0}, abstractNote={Whey protein gels prepared under acidic conditions (pH<4.6) remain largely unutilized because of their weak and brittle nature in contrast to the favorable elastic gels produced at neutral or basic conditions. However, such usage is important, as low pH food products are desirable due to their shelf stability and less stringent sterilization processes. In this study, we use a two-step process involving enzyme followed by heat treatment to produce whey protein gels at low pH (4.0). Dynamic rheological measurements reveal that the gel elastic modulus and yield stress increase substantially when heat treatment is supplemented with enzyme treatment. Both the elastic modulus and yield stress increase with increasing enzyme concentration or treatment time. In contrast, the dynamic yield strain decreases with enzyme concentration but increases with time of enzyme treatment. These results are explained in terms of the enzyme treatment time affecting the diffusion of the enzyme within the gel. This in turn leads to two types of gel microstructure at short and long enzyme treatment times, with the extent of enzyme diffusion modulating the structure at intermediate times.}, number={1-3}, journal={INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES}, author={Burke, MD and Ha, SY and Pysz, MA and Khan, SA}, year={2002}, month={Dec}, pages={37–44} }