@article{reeves_salama_2000, title={A distributed algorithm for delay-constrained unicast routing}, volume={8}, ISSN={["1063-6692"]}, DOI={10.1109/90.842145}, abstractNote={We study the NP-hard delay-constrained least cost (DCLC) path problem. A solution to this problem is needed to provide real-time communication service to connection-oriented applications, such as video and voice. We propose a simple, distributed heuristic solution, called the delay-constrained unicast routing (DCUR) algorithm, DCUR requires limited network state information to be kept at each node: a cost vector and a delay vector. We prove DCUR's correctness by showing that it is always capable of constructing a loop-free delay-constrained path within finite time, if such a path exists. The worst case message complexity of DCUR is O(|V|/sup 2/) messages, where |V| is the number of nodes. However, simulation results show that, on the average, DCUR requires much fewer messages. Therefore, DCUR scales well to large networks. We also use simulation to compare DCUR to the optimal algorithm, and to the least delay path algorithm. Our results show that DCUR's path costs are within 10% of those of the optimal solution.}, number={2}, journal={IEEE-ACM TRANSACTIONS ON NETWORKING}, author={Reeves, DS and Salama, HF}, year={2000}, month={Apr}, pages={239–250} } @article{salama_reeves_viniotis_1997, title={Evaluation of multicast routing algorithms for real-time communication on high-speed networks}, volume={15}, ISSN={["1558-0008"]}, DOI={10.1109/49.564132}, abstractNote={Multicast (MC) routing algorithms capable of satisfying the quality of service (QoS) requirements of real-time applications will be essential for future high-speed networks. We compare the performance of all of the important MC routing algorithms when applied to networks with asymmetric link loads. Each algorithm is judged based on the quality of the MC trees it generates and its efficiency in managing the network resources. Simulation results over random networks show that unconstrained algorithms are not capable of fulfilling the QoS requirements of real-time applications in wide-area networks. Simulations also reveal that one of the unconstrained algorithms, reverse path multicasting (RPM), is quite inefficient when applied to asymmetric networks. We study how combining routing with resource reservation and admission control improves the RPM's efficiency in managing the network resources. The performance of one semiconstrained heuristic, MSC, three constrained Steiner tree (CST) heuristics, Kompella, Pasquale, and Polyzos (1992), constrained adaptive ordering (CAO), and bounded shortest multicast algorithm (BSMA), and one constrained shortest path tree (CSPT) heuristic, the constrained Dijkstra heuristic (CDKS) are also studied. Simulations show that the semiconstrained and constrained heuristics are capable of successfully constructing MC trees which satisfy the QoS requirements of real-time traffic. However, the cost performance of the heuristics varies. The BSMA's MC trees are lower in cost than all other constrained heuristics. Finally, we compare the execution times of all algorithms, unconstrained, semiconstrained, and constrained.}, number={3}, journal={IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS}, author={Salama, HF and Reeves, DS and Viniotis, Y}, year={1997}, month={Apr}, pages={332–345} }