@article{wilson_whitt_ibanez_rocheford_goodman_buckler_2004, title={Dissection of maize kernel composition and starch production by candidate gene association}, volume={16}, ISSN={["1532-298X"]}, DOI={10.1105/tpc.104.025700}, abstractNote={Cereal starch production forms the basis of subsistence for much of the world's human and domesticated animal populations. Starch concentration and composition in the maize (Zea mays ssp mays) kernel are complex traits controlled by many genes. In this study, an association approach was used to evaluate six maize candidate genes involved in kernel starch biosynthesis: amylose extender1 (ae1), brittle endosperm2 (bt2), shrunken1 (sh1), sh2, sugary1, and waxy1. Major kernel composition traits, such as protein, oil, and starch concentration, were assessed as well as important starch composition quality traits, including pasting properties and amylose levels. Overall, bt2, sh1, and sh2 showed significant associations for kernel composition traits, whereas ae1 and sh2 showed significant associations for starch pasting properties. ae1 and sh1 both associated with amylose levels. Additionally, haplotype analysis of sh2 suggested this gene is involved in starch viscosity properties and amylose content. Despite starch concentration being only moderately heritable for this particular panel of diverse maize inbreds, high resolution was achieved when evaluating these starch candidate genes, and diverse alleles for breeding and further molecular analysis were identified.}, number={10}, journal={PLANT CELL}, author={Wilson, LM and Whitt, SR and Ibanez, AM and Rocheford, TR and Goodman, MM and Buckler, ES}, year={2004}, month={Oct}, pages={2719–2733} } @article{whitt_wilson_tenaillon_gaut_buckler_2002, title={Genetic diversity and selection in the maize starch pathway}, volume={99}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.202476999}, abstractNote={ Maize is both phenotypically and genetically diverse. Sequence studies generally confirm the extensive genetic variability in modern maize is consistent with a lack of selection. For more than 6,000 years, Native Americans and modern breeders have exploited the tremendous genetic diversity of maize ( Zea mays ssp. mays ) to create the highest yielding grain crop in the world. Nonetheless, some loci have relatively low levels of genetic variation, particularly loci that have been the target of artificial selection, like c1 and tb1 . However, there is limited information on how selection may affect an agronomically important pathway for any crop. These pathways may retain the signature of artificial selection and may lack genetic variation in contrast to the rest of the genome. To evaluate the impact of selection across an agronomically important pathway, we surveyed nucleotide diversity at six major genes involved in starch metabolism and found unusually low genetic diversity and strong evidence of selection. Low diversity in these critical genes suggests that a paradigm shift may be required for future maize breeding. Rather than relying solely on the diversity within maize or on transgenics, future maize breeding would perhaps benefit from the incorporation of alleles from maize's wild relatives. }, number={20}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Whitt, SR and Wilson, LM and Tenaillon, MI and Gaut, BS and Buckler, ES}, year={2002}, month={Oct}, pages={12959–12962} }