@article{davis_wilson_mick_xu_hua_mineo_sule_steer_franzon_2005, title={Demystifying 3D ICs: The procs and cons of going vertical}, volume={22}, ISSN={["1558-1918"]}, DOI={10.1109/MDT.2005.136}, abstractNote={This article provides a practical introduction to the design trade-offs of the currently available 3D IC technology options. It begins with an overview of techniques, such as wire bonding, microbumps, through vias, and contactless interconnection, comparing them in terms of vertical density and practical limits to their use. We then present a high-level discussion of the pros and cons of 3D technologies, with an analysis relating the number of transistors on a chip to the vertical interconnect density using estimates based on Rent's rule. Next, we provide a more detailed design example of inductively coupled interconnects, with measured results of a system fabricated in a 0.35-/spl mu/m technology and an analysis of misalignment and crosstalk tolerances. Lastly, we present a case study of a fast Fourier transform (FFT) placed and routed in a 0.18-/spl mu/m through-via silicon-on-insulator (SOI) technology, comparing the 3D design to a traditional 2D approach in terms of wire length and critical-path delay.}, number={6}, journal={IEEE DESIGN & TEST OF COMPUTERS}, author={Davis, WR and Wilson, J and Mick, S and Xu, M and Hua, H and Mineo, C and Sule, AM and Steer, M and Franzon, PD}, year={2005}, pages={498–510} } @article{cai_zhang_hua_zhang_2002, title={Direct formation of self-assembled nanoporous aluminium oxide on SiO2 and Si substrates}, volume={13}, ISSN={["1361-6528"]}, DOI={10.1088/0957-4484/13/5/317}, abstractNote={An unconventional self-assembly process was integrated with traditional silicon microfabrication technologies to directly form hexagonally ordered nanoporous patterns on both SiO2 and Si surfaces. Starting with an aluminium thin film deposited on a SiO2 or Si substrate, an Al anodization process was employed to generate highly uniform nanoporous anodic aluminium oxide thin films with average pore diameters of 30–70 nm directly on SiO2 and Si surfaces. The long-range order of the anodic aluminium oxide nanoporous structures was improved by thermally annealing the starting Al films to promote the grain size growth and by utilizing a multiple anodization process to enhance their uniformity. The formation of the hexagonally ordered nanoporous array may be attributed to the interplay between the topological requirement for space filling of pores and the kinetics of domain growth with time under a constant anodization voltage. These results demonstrate the feasibility of integrating self-assembled anodic aluminium oxide nanostructures with Si microfabrication technologies in the pursuit of future-generation Si nanoelectronic devices.}, number={5}, journal={NANOTECHNOLOGY}, author={Cai, AL and Zhang, HY and Hua, H and Zhang, ZB}, year={2002}, month={Oct}, pages={627–630} }