@article{fulton_cook_lucovsky_nemanich_2004, title={Interface instabilities and electronic properties of ZrO2 on silicon (100)}, volume={96}, ISSN={["1089-7550"]}, DOI={10.1063/1.1776313}, abstractNote={The interface stability of Zr-based high-k dielectrics with an oxide buffer layer was explored with x-ray (hυ=1254eV) and ultraviolet (hυ=21.2eV) photoemission spectroscopy. Zirconium oxide films were grown and characterized in situ in a stepwise sequence to explore their chemical stability and electronic properties as a function of film thickness and processing conditions. The buffer layers serve to lower the interface state density and to address the high temperature instabilities of ZrO2 in direct contact with Si. This research addresses three issues: (1) the development of the band offsets and electronic structure during the low temperature (T<300°C) growth processes, (2) variations in the band structure as effected by process conditions and annealing (T<700°C), and (3) the interface stability of Zr oxide films at high temperatures (T>700°C). Annealing the as-grown films to 600°C results in an ∼2eV shift of the ZrO2-Si band alignment, giving a band offset that is, favorable to devices, in agreement with predictions and in agreement with other experiments. We propose that the as-grown films contain excess oxygen resulting in a charge transfer from the Si substrate to the internal (ZrO2-SiO2) interface and that annealing to 600°C is sufficient to drive off this oxygen. Further annealing to 900°C, in the presence of excess Si at the surface, results in decomposition of the oxide to form ZrSi2.}, number={5}, journal={JOURNAL OF APPLIED PHYSICS}, author={Fulton, CC and Cook, TE and Lucovsky, G and Nemanich, RJ}, year={2004}, month={Sep}, pages={2665–2673} } @article{cook_fulton_mecouch_davis_lucovsky_nemanich_2003, title={Band offset measurements of the GaN (0001)/HfO2 interface}, volume={94}, DOI={10.1063/1.1618374}, number={11}, journal={Journal of Applied Physics}, author={Cook, T. E. and Fulton, C. C. and Mecouch, W. J. and Davis, R. F. and Lucovsky, G. and Nemanich, R. J.}, year={2003}, pages={7155–7158} } @article{cook_fulton_mecouch_davis_lucovsky_nemanich_2003, title={Band offset measurements of the Si3N4/GaN (0001) interface}, volume={94}, ISSN={["0021-8979"]}, DOI={10.1063/1.1601314}, abstractNote={X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy were used to measure electronic states as Si3N4 was deposited on clean GaN (0001) surfaces. The n-type (2×1018) and p-type (1×1017) GaN surfaces were atomically cleaned in NH3 at 860 °C, and the n-and p-type surfaces showed upward band bending of ∼0.2±0.1 eV and downward band bending of 1.1±0.1 eV, respectively, both with an electron affinity of 3.1±0.1 eV. Layers of Si (∼0.2 nm) were deposited on the clean GaN and nitrided using an electron cyclotron resonance N2 plasma at 300 °C and subsequently annealed at 650 °C for densification into a Si3N4 film. Surface analysis was performed after each step in the process, and yielded a valence band offset of 0.5±0.1 eV. Both interfaces exhibited type II band alignment where the valence band maximum of GaN lies below that of the Si3N4 valence band. The conduction band offset was deduced to be 2.4±0.1 eV, and a change of the interface dipole of 1.1±0.1 eV was observed for Si3N4/GaN interface formation.}, number={6}, journal={JOURNAL OF APPLIED PHYSICS}, author={Cook, TE and Fulton, CC and Mecouch, WJ and Davis, RF and Lucovsky, G and Nemanich, RJ}, year={2003}, month={Sep}, pages={3949–3954} } @article{cook_fulton_mecouch_tracy_davis_hurt_lucovsky_nemanich_2003, title={Measurement of the band offsets of SiO2 on clean n- and p-type GaN(0001)}, volume={93}, ISSN={["0021-8979"]}, DOI={10.1063/1.1559424}, abstractNote={The band alignment at the SiO2-GaN interface is important for passivation of high voltage devices and for gate insulator applications. X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy have been used to observe the interface electronic states as SiO2 was deposited on clean GaN(0001) surfaces. The substrates, grown by metallorganic chemical vapor deposition, were n- (1×1017) and p-type (2×1018) GaN on 6H-SiC(0001) with an AlN(0001) buffer layer. The GaN surfaces were atomically cleaned via an 860 °C anneal in an NH3 atmosphere. For the clean surfaces, n-type GaN showed upward band bending of 0.3±0.1 eV, while p-type GaN showed downward band bending of 1.3±0.1 eV. The electron affinity for n- and p-type GaN was measured to be 2.9±0.1 and 3.2±0.1 eV, respectively. To avoid oxidizing the GaN, layers of Si were deposited on the clean GaN surface via ultrahigh vacuum e-beam deposition, and the Si was oxidized at 300 °C by a remote O2 plasma. The substrates were annealed at 650 °C for densification of the SiO2 films. Surface analysis techniques were performed after each step in the process, and yielded a valence band offset of 2.0±0.2 eV and a conduction band offset of 3.6±0.2 eV for the GaN-SiO2 interface for both p- and n-type samples. Interface dipoles of 1.8 and 1.5 eV were deduced for the GaN-SiO2 interface for the n- and p-type surfaces, respectively.}, number={7}, journal={JOURNAL OF APPLIED PHYSICS}, author={Cook, TE and Fulton, CC and Mecouch, WJ and Tracy, KM and Davis, RF and Hurt, EH and Lucovsky, G and Nemanich, RJ}, year={2003}, month={Apr}, pages={3995–4004} }