@article{whitehead_hoppes_musser_perkins_lepiz_2019, title={The Use of Alfaxalone in Quaker Parrots (Myiopsitta monachus)}, volume={33}, ISSN={["1938-2871"]}, DOI={10.1647/2018-393}, abstractNote={Abstract: Alfaxalone is a neurosteroid anesthetic that acts on gamma-aminobutyric acid alpha-receptors. The objective of this study was to evaluate the clinical safety and efficacy of alfaxalone (Alfaxan CD). Due to observed hyperexcitability in the subject animals when alfaxalone was the only drug used during the initial trials, premedication with midazolam was also evaluated during the final study. Ten adult Quaker parrots (Myiopsitta monachus) were assigned to 3 groups: 1) low-dose alfaxalone 10 mg/kg (LD), 2) high-dose alfaxalone 25 mg/kg (HD), and 3) alfaxalone 10 mg/ kg with midazolam 1 mg/kg premedication (AM), administered intramuscularly. Induction time, sedation quality, duration of action, and vital parameters, including heart rate, respiratory rate, and temperature, were recorded. All protocols achieved adequate sedation; however, muscle tremors and hyperexcitation were variable. The LD group had a significantly longer mean ± SD induction time (13.5 ± 4.5 minutes) as compared to the HD (6.0 ± 1.3 minutes, P = .002) and AM (6.5 ± 2.9 minutes, P = .006) groups, while recovery time was significantly longer in the HD group (86.2 ± 13.4 minutes) than the LD group (44.4 ± 10.8 minutes, P < .001). Midazolam premedication resulted in reduction of both muscle tremors and hyperexcitation associated with alfaxalone administration, but the recovery time was significantly longer (103.5 ± 15.1 minutes, P < .001) than for the LD group. Alfaxalone as a sole agent resulted in muscle tremors and hyperexcitation during induction, which was attenuated by premedication with midazolam. Further investigation is warranted to characterize the effects of alfaxalone and drugs used to premedicate Quaker parrots.}, number={4}, journal={JOURNAL OF AVIAN MEDICINE AND SURGERY}, author={Whitehead, Michelle C. and Hoppes, Sharman M. and Musser, Jeffrey M. B. and Perkins, Jennifer L. and Lepiz, Mauricio L.}, year={2019}, month={Dec}, pages={340–348} } @article{hoppes_flammer_hoersch_papich_paul-murphy_2003, title={Disposition and analgesic cockatoos effects of fentanyl in white (Cacatua alba)}, volume={17}, ISSN={["1082-6742"]}, DOI={10.1647/2002-008}, abstractNote={Abstract Fentanyl is a mu opioid agonist with 80–100 times the analgesic potency of morphine. Fentanyl is used in several mammalian species for relief of severe pain, but its use has not been investigated in psittacine birds. To determine the pharmacologic disposition of fentanyl in healthy white cockatoos (Cacatua alba), we measured fentanyl plasma concentrations in sequentially collected samples after administration of fentanyl at 0.01 or 0.02 mg/kg IM. To investigate the analgesic effects of fentanyl in conscious cockatoos, we compared the change in pre- and posttreatment levels of electrical and thermal noxious stimuli necessary to elicit a withdrawal response in birds administered fentanyl at 2 different doses (0.02 mg/kg IM or 0.2 mg/kg SC) and those given saline. Fentanyl was rapidly absorbed and plasma concentrations declined with an elimination half-life of 1.2–1.4 hours. Plasma concentrations considered to be analgesic in humans were maintained for at least 2 hours with the 0.02 mg/kg dose. However, no significant difference was found in analgesic response between birds given saline and those given fentanyl at 0.02 mg/kg IM. Although the 0.2 mg/kg SC dose provided significant analgesia in some birds, fentanyl at this dose is not recommended as a routine analgesic agent because a large volume of drug must be injected and this dose causes hyperactivity in some birds.}, number={3}, journal={JOURNAL OF AVIAN MEDICINE AND SURGERY}, author={Hoppes, S and Flammer, K and Hoersch, K and Papich, M and Paul-Murphy, J}, year={2003}, month={Sep}, pages={124–130} }