@article{whittier_xu_zanten_kiserow_roberts_2006, title={Viscosity of polystyrene solutions expanded with carbon dioxide}, volume={99}, ISSN={["1097-4628"]}, DOI={10.1002/app.22483}, abstractNote={Abstract}, number={2}, journal={JOURNAL OF APPLIED POLYMER SCIENCE}, author={Whittier, RE and Xu, DW and Zanten, JH and Kiserow, DJ and Roberts, GW}, year={2006}, month={Jan}, pages={540–549} } @article{xu_carbonell_kiserow_roberts_2005, title={Hydrogenation of polystyrene in CO2-expanded solvents: Catalyst poisoning}, volume={44}, ISSN={["0888-5885"]}, DOI={10.1021/ie040243q}, abstractNote={Organic solvents expanded with supercritical carbon dioxide can be excellent media for hydrogenation reactions. However, catalyst poisoning by CO formed via the reverse water-gas-shift reaction occurs during many hydrogenations in the presence of CO2. In this research, the hydrogenation of polystyrene in CO2-expanded decahydronaphthalene was studied in a batch reactor using two hydrogenation catalysts, 5%Pd/BaSO4 and 65%Ni/Al2O3/SiO2. The 5%Pd/BaSO4 catalyst deactivated at 150 °C and CO2 pressures of 250−2250 psig (1.8−15.6 MPa). Approximately 50 ppm CO was present in the CO2-rich light phase after about 10 h at 150 °C, 750 psig H2 pressure, and 2250 psig CO2 pressure. A model that incorporates CO poisoning was developed to describe deactivation of the Pd/BaSO4 catalyst. The 65%Ni/Al2O3/SiO2 catalyst was more active for ring hydrogenation than 5%Pd/BaSO4, and very little CO was formed in the presence of CO2. The Ni catalyst deactivated in the presence of CO2 at 180 °C, possibly due to H2O formed in a meth...}, number={16}, journal={INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH}, author={Xu, DW and Carbonell, RG and Kiserow, DJ and Roberts, GW}, year={2005}, month={Aug}, pages={6164–6170} } @misc{roberts_xu_kiserow_carbonell, title={Hydrogenation of polymers in the presence of supercritical carbon dioxide}, volume={7,408,009}, number={2007 Apr. 11}, publisher={Washington, DC: U.S. Patent and Trademark Office}, author={Roberts, G. W. and Xu, D. and Kiserow, D. J. and Carbonell, R. G.} }