@article{dewitt_guedira_lauer_sarinelli_tyagi_fu_hao_murphy_marshall_akhunova_et al._2020, title={Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat}, volume={225}, ISSN={["1469-8137"]}, DOI={10.1111/nph.16152}, abstractNote={Summary}, number={1}, journal={NEW PHYTOLOGIST}, author={DeWitt, Noah and Guedira, Mohammed and Lauer, Edwin and Sarinelli, Martin and Tyagi, Priyanka and Fu, Daolin and Hao, QunQun and Murphy, J. Paul and Marshall, David and Akhunova, Alina and et al.}, year={2020}, month={Jan}, pages={326–339} } @article{morozova_ayroles_jordan_duncan_carbone_lyman_stone_govindaraju_ellison_mackay_et al._2009, title={Alcohol Sensitivity in Drosophila: Translational Potential of Systems Genetics}, volume={183}, ISSN={["1943-2631"]}, DOI={10.1534/genetics.109.107490}, abstractNote={Abstract}, number={2}, journal={GENETICS}, author={Morozova, Tatiana V. and Ayroles, Julien F. and Jordan, Katherine W. and Duncan, Laura H. and Carbone, Mary Anna and Lyman, Richard E. and Stone, Eric A. and Govindaraju, Diddahally R. and Ellison, R. Curtis and Mackay, Trudy F. C. and et al.}, year={2009}, month={Oct}, pages={733–745} } @article{ayroles_carbone_stone_jordan_lyman_magwire_rollmann_duncan_lawrence_anholt_et al._2009, title={Systems genetics of complex traits in Drosophila melanogaster}, volume={41}, ISSN={["1546-1718"]}, DOI={10.1038/ng.332}, abstractNote={Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight into the molecular basis of pleiotropy between complex traits.}, number={3}, journal={NATURE GENETICS}, author={Ayroles, Julien F. and Carbone, Mary Anna and Stone, Eric A. and Jordan, Katherine W. and Lyman, Richard F. and Magwire, Michael M. and Rollmann, Stephanie M. and Duncan, Laura H. and Lawrence, Faye and Anholt, Robert R. H. and et al.}, year={2009}, month={Mar}, pages={299–307} } @article{carbone_jordan_lyman_harbison_leips_morgan_deluca_awadalla_mackay_2006, title={Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosphila}, volume={16}, ISSN={["1879-0445"]}, DOI={10.1016/j.cub.2006.03.051}, abstractNote={Quantitative traits are shaped by networks of pleiotropic genes . To understand the mechanisms that maintain genetic variation for quantitative traits in natural populations and to predict responses to artificial and natural selection, we must evaluate pleiotropic effects of underlying quantitative trait genes and define functional allelic variation at the level of quantitative trait nucleotides (QTNs). Catecholamines up (Catsup), which encodes a negative regulator of tyrosine hydroxylase , the rate-limiting step in the synthesis of the neurotransmitter dopamine, is a pleiotropic quantitative trait gene in Drosophila melanogaster. We used association mapping to determine whether the same or different QTNs at Catsup are associated with naturally occurring variation in multiple quantitative traits. We sequenced 169 Catsup alleles from a single population and detected 33 polymorphisms with little linkage disequilibrium (LD). Different molecular polymorphisms in Catsup are independently associated with variation in longevity, locomotor behavior, and sensory bristle number. Most of these polymorphisms are potentially functional variants in protein coding regions, have large effects, and are not common. Thus, Catsup is a pleiotropic quantitative trait gene, but individual QTNs do not have pleiotropic effects. Molecular population genetic analyses of Catsup sequences are consistent with balancing selection maintaining multiple functional polymorphisms.}, number={9}, journal={CURRENT BIOLOGY}, author={Carbone, Mary Anna and Jordan, Katherine W. and Lyman, Richard F. and Harbison, Susan T. and Leips, Jeff and Morgan, Theodore J. and DeLuca, Maria and Awadalla, Philip and Mackay, Trudy F. C.}, year={2006}, month={May}, pages={912–919} } @article{jordan_morgan_mackay_2006, title={Quantitative trait loci for locomotor behavior in Drosophila melanogaster}, volume={174}, ISSN={["0016-6731"]}, DOI={10.1534/genetics.106.058099}, abstractNote={Abstract}, number={1}, journal={GENETICS}, author={Jordan, Katherine W. and Morgan, Theodore J. and Mackay, Trudy F. C.}, year={2006}, month={Sep}, pages={271–284} } @article{huang_richards_carbone_zhu_anholt_ayroles_duncan_jordan_lawrence_magwire_et al., title={Epistasis dominates the genetic architecture of Drosophila quantitative traits}, volume={109}, number={39}, journal={Proceedings of the National Academy of Sciences of the United States of America}, author={Huang, W. and Richards, S. and Carbone, M. A. and Zhu, D. H. and Anholt, R. R. H. and Ayroles, J. F. and Duncan, L. and Jordan, K. W. and Lawrence, F. and Magwire, M. M. and et al.}, pages={15553–15559} } @article{jordan_craver_magwire_cubilla_mackay_anholt, title={Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster}, volume={7}, number={6}, journal={PLoS One}, author={Jordan, K. W. and Craver, K. L. and Magwire, M. M. and Cubilla, C. E. and Mackay, T. F. C. and Anholt, R. R. H.} } @article{jordan_carbone_yamamoto_morgan_mackay, title={Quantitative genomics of locomotor behavior in Drosophila melanogaster}, volume={8}, number={8}, journal={Genome Biology}, author={Jordan, K. W. and Carbone, M. A. and Yamamoto, A. and Morgan, T. J. and Mackay, T. F.} } @article{jumbo-lucioni_ayroles_chambers_jordan_leips_mackay_de_luca, title={Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster}, volume={11}, journal={BMC Genomics}, author={Jumbo-Lucioni, P. and Ayroles, J. F. and Chambers, M. M. and Jordan, K. W. and Leips, J. and Mackay, T. F. C. and De and Luca, M.} } @article{mackay_richards_stone_barbadilla_ayroles_zhu_casillas_han_magwire_cridland_et al., title={The Drosophila melanogaster genetic reference panel}, volume={482}, number={7384}, journal={Nature}, author={Mackay, T. F. C. and Richards, S. and Stone, E. A. and Barbadilla, A. and Ayroles, J. F. and Zhu, D. H. and Casillas, S. and Han, Y. and Magwire, M. M. and Cridland, J. M. and et al.}, pages={173–178} }