A. Clay Clark Shrestha, S., Tung, J., Grinshpon, R. D., Swartz, P., Hamilton, P. T., Dimos, B., … Clark, A. C. (2020). Caspases from scleractinian coral show unique regulatory features. JOURNAL OF BIOLOGICAL CHEMISTRY, 295(43), 14578–14591. https://doi.org/10.1074/jbc.RA120.014345 Maciag, J. J., Mackenzie, S. H., Tucker, M. B., Schipper, J. L., Swartz, P., & Clark, A. C. (2016). Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 113(41), E6080–E6088. https://doi.org/10.1073/pnas.1603549113 Cade, C., Swartz, P., MacKenzie, S. H., & Clark, A. C. (2014). Modifying Caspase-3 Activity by Altering Allosteric Networks. BIOCHEMISTRY, 53(48), 7582–7595. https://doi.org/10.1021/bi500874k Ma, C. X., MacKenzie, S. H., & Clark, A. C. (2014). Redesigning the procaspase-8 dimer interface for improved dimerization. Protein Science, 23(4), 442–453. MacKenzie, S. H., Schipper, J. L., England, E. J., Thomas, M. E., III, Blackburn, K., Swartz, P., & Clark, A. C. (2013). Lengthening the Intersubunit Linker of Procaspase 3 Leads to Constitutive Activation. BIOCHEMISTRY, 52(36), 6219–6231. https://doi.org/10.1021/bi400793s MacKenzie, S. H., & Clark, A. C. (2013). Slow folding and assembly of a procaspase-3 interface variant. Biochemistry, 52(20), 3415–3427. Walters, J., Schipper, J. L., Swartz, P., Mattos, C., & Clark, A. C. (2012). Allosteric modulation of caspase 3 through mutagenesis. BIOSCIENCE REPORTS, 32(4), 401–411. https://doi.org/10.1042/bsr20120037 Schipper, J. L., MacKenzie, S. H., Sharma, A., & Clark, A. C. (2011). A bifunctional allosteric site in the dimer interface of procaspase-3. BIOPHYSICAL CHEMISTRY, 159(1), 100–109. https://doi.org/10.1016/j.bpc.2011.05.013 Walters, J., Swartz, P., Mattos, C., & Clark, A. C. (2011). Thermodynamic, enzymatic and structural effects of removing a salt bridge at the base of loop 4 in (pro)caspase-3. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 508(1), 31–38. https://doi.org/10.1016/j.abb.2011.01.011 MacKenzie, S. H., Schipper, J. L., & Clark, A. C. (2010). [Review of The potential for caspases in drug discovery]. Current Opinion in Drug Discovery & Development, 13(5), 568–576. Walters, J., Pop, C., Scott, F. L., Drag, M., Swartz, P., Mattos, C., … Clark, A. C. (2009). A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. BIOCHEMICAL JOURNAL, 424, 335–345. https://doi.org/10.1042/bj20090825 Milam, S. L., & Clark, A. C. (2009). Folding and assembly kinetics of procaspase-3. PROTEIN SCIENCE, 18(12), 2500–2517. https://doi.org/10.1002/pro.259 Walters, J., Milam, S. L., & Clark, A. C. (2009). [Review of Practical approaches to protein folding and assembly: Spectroscopic strategies in thermodynamics and kinetics]. Methods in enzymology: biothermodynamics,vol 455, part a, 455, 1–39. Mattos, C., & Clark, A. C. (2008). [Review of Minimizing frustration by folding in an aqueous environment]. Archives of Biochemistry and Biophysics, 469(1), 118–131. Clark, A. C. (2008). Protein folding: Are we there yet? Archives of Biochemistry and Biophysics, 469(1), 1–3. MacKenzie, S. H., & Clark, A. C. (2008). [Review of Targeting cell death in tumors by activating Caspases]. Current Cancer Drug Targets, 8(2), 98–109. Milam, S. L., Nicely, N. I., Feeney, B., Mattos, C., & Clark, A. C. (2007). Rapid folding and unfolding of Apaf-1 CARD. JOURNAL OF MOLECULAR BIOLOGY, 369(1), 290–304. https://doi.org/10.1016/j.jmb.2007.02.105 Feeney, B., Soderblom, E. J., Goshe, M. B., & Clark, A. C. (2006). Novel protein purification system utilizing an N-terminal fusion protein and a caspase-3 cleavable linker. Protein Expression and Purification, 47(1), 311–318. https://doi.org/10.1016/j.pep.2005.10.005 Feeney, B., Pop, C., Swartz, P., Mattos, C., & Clark, A. C. (2006). Role of loop bundle hydrogen bonds in the maturation and activity of (pro) caspase-3. BIOCHEMISTRY, 45(44), 13249–13263. https://doi.org/10.1021/bi0611964 Chen, Y. R., & Clark, A. C. (2006). Substitutions of prolines examine their role in kinetic trap formation of the caspase recruitment domain (CARD) of RICK. PROTEIN SCIENCE, 15(3), 395–409. https://doi.org/10.1110/ps.051943006 Chen, C. Y., Rojanatavorn, K., Clark, A. C., & Shih, J. C. H. (2005). Characterization and enzymatic degradation of Sup35NM, a yeast prion-like protein. PROTEIN SCIENCE, 14(9), 2228–2235. https://doi.org/10.1110/ps.041234405 Feeney, B., & Clark, A. C. (2005). Reassembly of active caspase-3 is facilitated by the propeptide. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(48), 39772–39785. https://doi.org/10.1074/jbc.M505834200 Bose, K., & Clark, A. C. (2005). pH effects on the stability and dimerization of procaspase-3. Protein Science, 14(1), 24–36. Bobay, B. G., Benson, L., Naylor, S., Feeney, B., Clark, A. C., Goshe, M. B., … Cavanagh, J. (2004). Evaluation of the DNA Binding Tendencies of the Transition State Regulator AbrB†. Biochemistry, 43(51), 16106–16118. https://doi.org/10.1021/bi048399h Feeney, B., Pop, C., Tripathy, A., & Clark, A. C. (2004). Ionic interactions near the loop L4 are important for maintaining the active-site environment and the dimer stability of (pro)caspase 3. Biochemical Journal (London, England : 1984), 384(Dec 15 2004), 515–525. Chen, Y. R., & Clark, A. C. (2004). Kinetic traps in the folding/unfolding of procaspase-1 CARD domain. PROTEIN SCIENCE, 13(8), 2196–2206. https://doi.org/10.1110/ps.03521504 Bose, K., Pop, C., Feeney, B., & Clark, A. C. (2003). An uncleavable procaspase-3 mutant has a lower catalytic efficiency but an active site similar to that of mature caspase-3. BIOCHEMISTRY, 42(42), 12298–12310. https://doi.org/10.1021/bi034998x Chen, Y. R., & Clark, A. C. (2003). Equilibrium and kinetic folding of a alpha-helical Greek key protein domain: Caspase recruitment domain (CARD) of RICK. BIOCHEMISTRY, 42(20), 6310–6320. https://doi.org/10.1021/bi0340752 Pop, C., Feeney, B., Tripathy, A., & Clark, A. C. (2003). Mutations in the procaspase-3 dimer interface affect the activity of the zymogen. BIOCHEMISTRY, 42(42), 12311–12320. https://doi.org/10.1021/bi034999p Shen, W., Clark, A. C., & Huber, S. C. (2003). The C-terminal tail of Arabidopsis 14-3-3 omega functions as an autoinhibitor and may contain a tenth alpha-helix. PLANT JOURNAL, 34(4), 473–484. https://doi.org/10.1046/j.1365-313X.2003.01739.x Bose, K., & Clark, A. C. (2001). Dimeric procaspase-3 unfolds via a four-state equilibrium process. BIOCHEMISTRY, 40(47), 14236–14242. https://doi.org/10.1021/bi0110387 Pop, C., Chen, Y. R., Smith, B., Bose, K., Bobay, B., Tripathy, A., … Clark, A. C. (2001). Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. BIOCHEMISTRY, 40(47), 14224–14235. https://doi.org/10.1021/bi011037e Clark, A. C., Noland, B. W., & Baldwin, T. O. (2000). A rapid chromatographic method to separate the subunits of bacterial luciferase in urea-containing buffer. Bioluminescence and Chemiluminescence, Pt. C, 305, 157–164.