@article{harmon_wise_curry_mistele_mason_grimac_2023, title={Rapid Analysis of Muscovites on a Lithium Pegmatite Prospect by Handheld LIBS}, volume={13}, ISSN={["2075-163X"]}, DOI={10.3390/min13050697}, abstractNote={Laser-induced breakdown spectroscopy (LIBS) is a technology for compositional analysis that is particularly effective for light elements, particularly Li, which is a critical commodity for emerging green technologies. This study undertook analysis by handheld LIBS of muscovite from the drill core, outcrop, and soil on the Carolina Lithium Prospect (CLP) in Gaston County, North Carolina (USA), which lies within the Carolina Tin-Spodumene Belt (CTSB). Abundances of the alkali elements Li, K, and Rb were determined for more than 130 muscovites from the Li-rich pegmatites to track the degree of pegmatite fractionation as a pathfinder for spodumene mineralization. Across the CTSB and including the CLP, muscovite Li contents vary over an order of magnitude, ranging from 0.04 to 0.74 wt. %, with their K/Rb ratios varying between 63 and 8, features that together document the highly evolved character of pegmatites within the CTSB district. On average, muscovite Li contents are greater in spodumene-bearing pegmatites at 0.21 ± 0.12 wt. % than for common quartz-feldspar pegmatites at 0.14 ± 0.08 wt. %. Although overlapping substantially in the middle portions of their distributions, muscovite K/Rb ratios are biased toward low values for spodumene-bearing pegmatites (X- = 21 ± 6) compared to those for quartz-feldspar pegmatites (X- = 33 ± 9). This study provides a framework for the use of LIBS analysis of muscovite in outcrop, drill core, and soil samples as an analytical tool for in-field and on-site geochemical analysis during Li pegmatite exploration and prospect evaluation.}, number={5}, journal={MINERALS}, author={Harmon, Russell S. and Wise, Michael A. and Curry, Adam C. and Mistele, Joshua S. and Mason, Michael S. and Grimac, Zach}, year={2023}, month={May} } @article{wise_harmon_curry_jennings_grimac_khashchevskaya_2022, title={Handheld LIBS for Li Exploration: An Example from the Carolina Tin-Spodumene Belt, USA}, volume={12}, ISSN={["2075-163X"]}, DOI={10.3390/min12010077}, abstractNote={Laser-induced breakdown spectroscopy (LIBS), which has recently emerged as tool for geochemical analysis outside the traditional laboratory setting, is an ideal tool for Li exploration because it is the only technique that can measure Li in minerals, rocks, soils, and brines in-situ in the field. In addition to being used in many products essential to modern life, Li is a necessary element for a reduced carbon future and Li–Cs–Ta (LCT) granitic pegmatites are an important source of Li. Such pegmatites can have varying degrees of enrichment in Li, Rb, Cs, Be, Sn, Ga, Ta>Nb, B, P, and F. We focus here on the LCT pegmatites of the Carolina Tin-Spodumene Belt (CTSB) situated in the Kings Mountain Shear Zone, which extends from South Carolina into North Carolina. The CTSB hosts both barren and fertile pegmatites, with Li-enriched pegmatites containing spodumene, K-feldspar, albite, quartz, muscovite, and beryl. We illustrate how handheld LIBS analysis can be used for real-time Li analysis in the field at a historically important CTSB pegmatite locality in Gaston County, N.C. in four contexts: (i) elemental detection and identification; (ii) microchemical mapping; (iii) depth profiling; and (iv) elemental quantitative analysis. Finally, as an example of a practical exploration application, we describe how handheld LIBS can be used to measure K/Rb ratios and Li contents of muscovite and rapidly determine the degree of pegmatite fractionation. This study demonstrates the potential of handheld LIBS to drastically reduce the time necessary to acquire geochemical data relevant to acquiring compositional information for pegmatites during a Li pegmatite exploration program.}, number={1}, journal={MINERALS}, author={Wise, Michael A. and Harmon, Russell S. and Curry, Adam and Jennings, Morgan and Grimac, Zach and Khashchevskaya, Daria}, year={2022}, month={Jan} } @article{curry_gaynor_davies_ovtcharova_simpson_caricchi_2021, title={Timescales and thermal evolution of large silicic magma reservoirs during an ignimbrite flare-up: perspectives from zircon}, volume={176}, ISSN={["1432-0967"]}, DOI={10.1007/s00410-021-01862-w}, abstractNote={Abstract Four voluminous ignimbrites (150–500 km 3 ) erupted in rapid succession at 27 Ma in the central San Juan caldera cluster, Colorado. To reconstruct the timescales and thermal evolution of these magma reservoirs, we used zircon ID-TIMS U–Pb geochronology, zircon LA-ICP-MS geochemistry, thermal modeling, and zircon age and crystallization modeling. Zircon geochronology reveals dispersed zircon age spectra in all ignimbrites, with decreasing age dispersion through time that we term a ‘chimney sweeping’ event. Zircon whole-grain age modeling suggests that 2σ zircon age spans represent approximately one-quarter of total zircon crystallization timescales due to the averaging effect of whole-grain, individual zircon ages, resulting in zircon crystallization timescales of 0.8–2.7 m.y. Thermal and zircon crystallization modeling combined with Ti-in-zircon temperatures indicates that magma reservoirs were built over millions of years at relatively low magmatic vertical accretion rates (VARs) of 2–5 × 10 –3 m y −1 (2–5 × 10 –6 km 3 y −1 km −2 ), and we suggest that such low VARs were characteristic of the assembly of the greater San Juan magmatic body. Though we cannot unequivocally discern between dispersed zircon age spectra caused by inheritance (xenocrystic or antecrystic) versus prolonged crystallization from the same magma reservoir (autocrystic), our findings suggest that long-term magma input at relatively low VARs produced thermally mature upper crustal magma reservoirs resulting in protracted zircon crystallization timescales. Compiling all U–Pb ID-TIMS zircon ages of large ignimbrites, we interpret the longer timescales of subduction-related ignimbrites as a result of longer term, lower flux magmatism, and the shorter timescales of Snake River Plain ignimbrites as a result of shorter term, higher flux magmatism.}, number={12}, journal={CONTRIBUTIONS TO MINERALOGY AND PETROLOGY}, author={Curry, Adam and Gaynor, Sean P. and Davies, J. H. F. L. and Ovtcharova, Maria and Simpson, Guy and Caricchi, Luca}, year={2021}, month={Dec} }