@article{wise_curry_harmon_2024, title={Reevaluation of the K/Rb-Li Systematics in Muscovite as a Potential Exploration Tool for Identifying Li Mineralization in Granitic Pegmatites}, volume={14}, ISSN={["2075-163X"]}, DOI={10.3390/min14010117}, abstractNote={A dataset of >1190 published compositional analyses of muscovite from granitic pegmatites of varying mineralogical types was compiled to reevaluate the usefulness of K-Rb-Li systematics of muscovite as a tool for distinguishing mineralogically simple pegmatites from pegmatites with potential Li mineralization. Muscovite from (i) common, (ii) (Be-Nb-Ta-P)-enriched, (iii) Li-enriched, and (iv) REE- to F-enriched pegmatites contain Li contents that vary between 10 and 20,000 ppm depending on the degree of pegmatite fractionation. Common pegmatites are characterized by low degrees of fractionation as exhibited by K/Rb ratios ranging from 618 and 25 and Li contents generally being <200 ppm but infrequently as high as 743 ppm in muscovite. Moderately fractionated pegmatites with Be, Nb, Ta, and P enrichment contain muscovite having K/Rb ratios mostly between 45 and 7 plus Li contents between 5 to >1700 ppm. Muscovite from moderately to highly fractionated Li-rich pegmatites exhibit a wide range of K/Rb ratios and Li values: (i) K/Rb = 84 to 1.4 and Li = 35 to >18,100 ppm for spodumene pegmatites, (ii) K/Rb = 139 to 2 and Li = 139 to >18,500 ppm for petalite pegmatites, and (iii) K/Rb = 55 to 1.5 and Li = 743 to >17,800 ppm for lepidolite pegmatites. Pegmatites that host substantial REE- and F-rich minerals may carry muscovite with K/Rb ratios between 691 to 4 that has Li contents between 19 to 15,690 ppm. The K/Rb-Li behavior of muscovite can be useful in assessing the potential for Li mineralization in certain granitic pegmatite types. The proposed limits of K/Rb values and Li concentrations for identifying spodumene- or petalite-bearing pegmatites as part of an exploration program is reliable for Group 1 (LCT) pegmatite populations derived from S-type parental granites or anatectic melting of peraluminous metasedimentary rocks. However, it is not recommended for application to Group 2 (NYF) pegmatites affiliated with anorogenic to post-orogenic granitoids with A-type geochemical signatures or that derived by the anatexis of mafic rocks that generated REE- and F-rich melts.}, number={1}, journal={MINERALS}, author={Wise, Michael A. and Curry, Adam C. and Harmon, Russell S.}, year={2024}, month={Jan} } @article{harmon_wise_curry_mistele_mason_grimac_2023, title={Rapid Analysis of Muscovites on a Lithium Pegmatite Prospect by Handheld LIBS}, volume={13}, ISSN={["2075-163X"]}, DOI={10.3390/min13050697}, abstractNote={Laser-induced breakdown spectroscopy (LIBS) is a technology for compositional analysis that is particularly effective for light elements, particularly Li, which is a critical commodity for emerging green technologies. This study undertook analysis by handheld LIBS of muscovite from the drill core, outcrop, and soil on the Carolina Lithium Prospect (CLP) in Gaston County, North Carolina (USA), which lies within the Carolina Tin-Spodumene Belt (CTSB). Abundances of the alkali elements Li, K, and Rb were determined for more than 130 muscovites from the Li-rich pegmatites to track the degree of pegmatite fractionation as a pathfinder for spodumene mineralization. Across the CTSB and including the CLP, muscovite Li contents vary over an order of magnitude, ranging from 0.04 to 0.74 wt. %, with their K/Rb ratios varying between 63 and 8, features that together document the highly evolved character of pegmatites within the CTSB district. On average, muscovite Li contents are greater in spodumene-bearing pegmatites at 0.21 ± 0.12 wt. % than for common quartz-feldspar pegmatites at 0.14 ± 0.08 wt. %. Although overlapping substantially in the middle portions of their distributions, muscovite K/Rb ratios are biased toward low values for spodumene-bearing pegmatites (X- = 21 ± 6) compared to those for quartz-feldspar pegmatites (X- = 33 ± 9). This study provides a framework for the use of LIBS analysis of muscovite in outcrop, drill core, and soil samples as an analytical tool for in-field and on-site geochemical analysis during Li pegmatite exploration and prospect evaluation.}, number={5}, journal={MINERALS}, author={Harmon, Russell S. and Wise, Michael A. and Curry, Adam C. and Mistele, Joshua S. and Mason, Michael S. and Grimac, Zach}, year={2023}, month={May} } @article{wise_harmon_curry_jennings_grimac_khashchevskaya_2022, title={Handheld LIBS for Li Exploration: An Example from the Carolina Tin-Spodumene Belt, USA}, volume={12}, ISSN={["2075-163X"]}, DOI={10.3390/min12010077}, abstractNote={Laser-induced breakdown spectroscopy (LIBS), which has recently emerged as tool for geochemical analysis outside the traditional laboratory setting, is an ideal tool for Li exploration because it is the only technique that can measure Li in minerals, rocks, soils, and brines in-situ in the field. In addition to being used in many products essential to modern life, Li is a necessary element for a reduced carbon future and Li–Cs–Ta (LCT) granitic pegmatites are an important source of Li. Such pegmatites can have varying degrees of enrichment in Li, Rb, Cs, Be, Sn, Ga, Ta>Nb, B, P, and F. We focus here on the LCT pegmatites of the Carolina Tin-Spodumene Belt (CTSB) situated in the Kings Mountain Shear Zone, which extends from South Carolina into North Carolina. The CTSB hosts both barren and fertile pegmatites, with Li-enriched pegmatites containing spodumene, K-feldspar, albite, quartz, muscovite, and beryl. We illustrate how handheld LIBS analysis can be used for real-time Li analysis in the field at a historically important CTSB pegmatite locality in Gaston County, N.C. in four contexts: (i) elemental detection and identification; (ii) microchemical mapping; (iii) depth profiling; and (iv) elemental quantitative analysis. Finally, as an example of a practical exploration application, we describe how handheld LIBS can be used to measure K/Rb ratios and Li contents of muscovite and rapidly determine the degree of pegmatite fractionation. This study demonstrates the potential of handheld LIBS to drastically reduce the time necessary to acquire geochemical data relevant to acquiring compositional information for pegmatites during a Li pegmatite exploration program.}, number={1}, journal={MINERALS}, author={Wise, Michael A. and Harmon, Russell S. and Curry, Adam and Jennings, Morgan and Grimac, Zach and Khashchevskaya, Daria}, year={2022}, month={Jan} } @article{curry_gaynor_davies_ovtcharova_simpson_caricchi_2021, title={Timescales and thermal evolution of large silicic magma reservoirs during an ignimbrite flare-up: perspectives from zircon}, volume={176}, ISSN={["1432-0967"]}, DOI={10.1007/s00410-021-01862-w}, abstractNote={Abstract}, number={12}, journal={CONTRIBUTIONS TO MINERALOGY AND PETROLOGY}, author={Curry, Adam and Gaynor, Sean P. and Davies, J. H. F. L. and Ovtcharova, Maria and Simpson, Guy and Caricchi, Luca}, year={2021}, month={Dec} }