Alina Chertock Wang, C., Chertock, A., Cui, S., Kurganov, A., & Zhang, Z. (2023, February 23). A diffuse-domain-based numerical method for a chemotaxis-fluid model. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, Vol. 2. https://doi.org/10.1142/S0218202523500094 Chertock, A., Chu, S., & Kurganov, A. (2023, April 12). Adaptive High-Order A-WENO Schemes Based on a New Local Smoothness Indicator. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, Vol. 4. https://doi.org/10.4208/eajam.2022-313.160123 Chertock, A., Chu, S., & Kurganov, A. (2023). Adaptive High-Order A-WENO Schemes Based on a New Local Smoothness Indicator. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 13(3), 576–609. https://doi.org/10.4208/eajam.2022-313.160123August2023 Chertock, A., Mathematics, N. C. S. U., Leonard, C., Tsynkov, S., Utyuzhnikov, S., & Mechanical, A. (2023). Denoising convolution algorithms and applications to SAR signal processing. Communications on Analysis and Computation, 1(2), 135–156. https://doi.org/10.3934/cac.2023008 Chertock, A., Chu, S., Herty, M., Kurganov, A., & Lukacova-Medvid'ova, M. (2023). Local characteristic decomposition based central-upwind scheme. JOURNAL OF COMPUTATIONAL PHYSICS, 473. https://doi.org/10.1016/j.jcp.2022.111718 Chertock, A., Kurganov, A., Lukáčová-Medvid'ová, M., Spichtinger, P., & Wiebe, B. (2023). Stochastic Galerkin method for cloud simulation. Part II: A fully random Navier-Stokes-cloud model. Journal of Computational Physics, 479, 111987. https://doi.org/10.1016/j.jcp.2023.111987 Chertock, A., Kurganov, A., Wu, T., & Yan, J. (2023). Well-balanced numerical method for atmospheric flow equations with gravity. APPLIED MATHEMATICS AND COMPUTATION, 439. https://doi.org/10.1016/j.amc.2022.127587 Chertock, A., Degond, P., Dimarco, G., Lukáčová-Medvid’ová, M., & Ruhi, A. (2022). On a hybrid continuum-kinetic model for complex fluids. Partial Differential Equations and Applications, 3(5). https://doi.org/10.1007/s42985-022-00198-9 Chertock, A., Kurganov, A., Liu, X., Liu, Y., & Wu, T. (2022). Well-Balancing via Flux Globalization: Applications to Shallow Water Equations with Wet/Dry Fronts. JOURNAL OF SCIENTIFIC COMPUTING, 90(1). https://doi.org/10.1007/s10915-021-01680-z Chertock, A., Chu, S., & Kurganov, A. (2021). Hybrid Multifluid Algorithms Based on the Path-Conservative Central-Upwind Scheme. JOURNAL OF SCIENTIFIC COMPUTING, 89(2). https://doi.org/10.1007/s10915-021-01656-z Chertock, A., Kurganov, A., Miller, J., & Yan, J. (2020). Central-upwind scheme for a non-hydrostatic Saint-Venant system. In Hyperbolic problems: theory, numerics, applications (Vol. 10, pp. 25–41). Am. Inst. Math. Sci. (AIMS), Springfield, MO. Chertock, A., Kurganov, A., & Liu, Y. (2020). Finite-Volume-Particle Methods for the Two-Component Camassa-Holm System. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 27(2), 480–502. https://doi.org/10.4208/cicp.OA-2018-0325 Chertock, A., Kurganov, A., & Wu, T. (2020). Operator splitting based central-upwind schemes for shallow water equations with moving bottom topography. Communications in Mathematical Sciences, 18(8), 2149–2168. https://doi.org/10.4310/cms.2020.v18.n8.a3 Cheng, Y., Chertock, A., Herty, M., Kurganov, A., & Wu, T. (2019). A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations. JOURNAL OF SCIENTIFIC COMPUTING, 80(1), 538–554. https://doi.org/10.1007/s10915-019-00947-w Chertock, A., Kurganov, A., Ricchiuto, M., & Wu, T. (2019). Adaptive moving mesh upwind scheme for the two-species chemotaxis model. Computers & Mathematics with Applications, 77(12), 3172–3185. https://doi.org/10.1016/j.camwa.2019.01.021 Chertock, A., Kurganov, A., Lukáčová-Medvid’ová, M., & Nur Özcan, Ș. (2019). An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 12(1), 195–216. https://doi.org/10.3934/krm.2019009 Liu, X., Chertock, A., & Kurganov, A. (2019). An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces. JOURNAL OF COMPUTATIONAL PHYSICS, 391, 259–279. https://doi.org/10.1016/j.jcp.2019.04.035 Chertock, A., & Kurganov, A. (2019). High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models. ACTIVE PARTICLES, VOL 2: ADVANCES IN THEORY, MODELS, AND APPLICATIONS, pp. 109–148. https://doi.org/10.1007/978-3-030-20297-2_4 Chertock, A., Degond, P., Hecht, S., & Vincent, J.-P. (2019). Incompressible limit of a continuum model of tissue growth with segregation for two cell populations. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 16(5), 5804–5835. https://doi.org/10.3934/mbe.2019290 Chertock, A., Degond, P., Hecht, S., & Vincent, J.-P. (2019). Incompressible limit of a continuum model of tissue growth with segregation for two cell populations. Math. Biosci. Eng., 16(5), 5804–5835. https://doi.org/https://doi-org.prox.lib.ncsu.edu/10.1007/s10915-019-00947-w One-Dimensional/Two-Dimensional Coupling Approach with Quadrilateral Confluence Region for Modeling River Systems. (2019). Journal of Scientific Computing. https://doi.org/10.1007/s10915-019-00985-4 Preface to the Special Issue in Memory of Professor Saul Abarbanel. (2019). Journal of Scientific Computing. https://doi.org/10.1007/s10915-019-01084-0 Chertock, A., Kurganov, A., Lukáčová-Medvid’ová, M., Spichtinger, P., & Wiebe, B. (2019). Stochastic Galerkin method for cloud simulation. Mathematics of Climate and Weather Forecasting, 5(1), 65–106. https://doi.org/10.1515/mcwf-2019-0005 Chertock, A., Coco, A., Kurganov, A., & Russo, G. (2018). A second-order finite-difference method for compressible fluids in domains with moving boundaries. Commun. Comput. Phys., 23(1), 230–263. Chertock, A., Tan, C., & Yan, B. (2018). AN ASYMPTOTIC PRESERVING SCHEME FOR KINETIC MODELS WITH SINGULAR LIMIT. KINETIC AND RELATED MODELS, 11(4), 735–756. https://doi.org/10.3934/krm.2018030 Chertock, A., Epshteyn, Y., Hu, H., & Kurganov, A. (2018). High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. ADVANCES IN COMPUTATIONAL MATHEMATICS, 44(1), 327–350. https://doi.org/10.1007/s10444-017-9545-9 Chertock, A., Herty, M., & Özcan, Ş. N. (2018). Well-Balanced Central-Upwind Schemes for 2x2 Systems of Balance Laws. In Theory, Numerics and Applications of Hyperbolic Problems I (Vol. 236, pp. 345–361). https://doi.org/10.1007/978-3-319-91545-6_28 Chertock, A., Cui, S., Kurganov, A., Ozcan, S. N., & Tadmor, E. (2018). Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes. JOURNAL OF COMPUTATIONAL PHYSICS, 358, 36–52. https://doi.org/10.1016/j.jcp.2017.12.026 Chertock, A., Dudzinski, M., Kurganov, A., & Lukacova-Medvid'ova, M. (2018). Well-balanced schemes for the shallow water equations with Coriolis forces. NUMERISCHE MATHEMATIK, 138(4), 939–973. https://doi.org/10.1007/s00211-017-0928-0 Chertock, A. (2017). A Practical Guide to Deterministic Particle Methods. In Handbook of Numerical Analysis (Vol. 18, pp. 177–202). https://doi.org/10.1016/bs.hna.2016.11.004 Cheng, Y., Chertock, A., & Kurganov, A. (2017). A Simple Finite-Volume Method on a Cartesian Mesh for Pedestrian Flows with Obstacles. In Springer Proceedings in Mathematics & Statistics (Vol. 199, pp. 43–55). https://doi.org/10.1007/978-3-319-57397-7_4 Chertock, A., Degond, P., & Neusser, J. (2017). An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations. JOURNAL OF COMPUTATIONAL PHYSICS, 335, 387–403. https://doi.org/10.1016/j.jcp.2017.01.030 Chertock, A., Cui, S., & Kurganov, A. (2017). Hybrid Finite-Volume-Particle Method for Dusty Gas Flows. SMAI Journal of Computational Mathematics, 3, 139–180. https://doi.org/10.5802/smai-jcm.23 Bernstein, A., Chertock, A., & Kurganov, A. (2016). Central-upwind scheme for shallow water equations with discontinuous bottom topography. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 47(1), 91–103. https://doi.org/10.1007/s00574-016-0124-3 Carrillo, J. A., Chertock, A., & Huang, Y. (2015). A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 17(1), 233–258. https://doi.org/10.4208/cicp.160214.010814a Chertock, A., Liu, J.-G., & Pendleton, T. (2015, July). Elastic collisions among peakon solutions for the Camassa-Holm equation. APPLIED NUMERICAL MATHEMATICS, Vol. 93, pp. 30–46. https://doi.org/10.1016/j.apnum.2014.01.001 Chertock, A., Cui, S., Kurganov, A., & Wu, T. (2015). Steady State and Sign Preserving Semi-Implicit Runge--Kutta Methods for ODEs with Stiff Damping Term. SIAM Journal on Numerical Analysis, 53(4), 2008–2029. https://doi.org/10.1137/151005798 Chertock, A., Cui, S., Kurganov, A., & Wu, T. (2015). Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 78(6), 355–383. https://doi.org/10.1002/fld.4023 Chertock, A., Herty, M., & Kurganov, A. (2014). An Eulerian-Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 59(3), 689–724. https://doi.org/10.1007/s10589-014-9655-y Chertock, A., Kurganov, A., & Liu, Y. (2014). Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. NUMERISCHE MATHEMATIK, 127(4), 595–639. https://doi.org/10.1007/s00211-013-0597-6 Castro Diaz, M. J., Cheng, Y., Chertock, A., & Kurganov, A. (2014). Solving Two-Mode Shallow Water Equations Using Finite Volume Methods. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 16(5), 1323–1354. https://doi.org/10.4208/cicp.180513.230514a Chertock, A., Kurganov, A., Polizzi, A., & Timofeyev, I. (2013). PEDESTRIAN FLOW MODELS WITH SLOWDOWN INTERACTIONS. Mathematical Models and Methods in Applied Sciences, 24(02), 249–275. https://doi.org/10.1142/s0218202513400083 Chertock, A., Kurganov, A., Qu, Z., & Wu, T. (2013). Three-Layer Approximation of Two-Layer Shallow Water Equations. MATHEMATICAL MODELLING AND ANALYSIS, 18(5), 675–693. https://doi.org/10.3846/13926292.2013.869269 Chertock, A., Liu, J.-G., & Pendleton, T. (2012). CONVERGENCE OF A PARTICLE METHOD AND GLOBAL WEAK SOLUTIONS OF A FAMILY OF EVOLUTIONARY PDES. SIAM JOURNAL ON NUMERICAL ANALYSIS, 50(1), 1–21. https://doi.org/10.1137/110831386 Chertock, A., Liu, J.-G., & Pendleton, T. (2012). Convergence Analysis of the Particle Method for the Camassa-Holm Equation. In Series in Contemporary Applied Mathematics (Vol. 18, pp. 365–373). https://doi.org/10.1142/9789814417099_0033 Chertock, A., Du Toit, P., & Marsden, J. E. (2012). INTEGRATION OF THE EPDIFF EQUATION BY PARTICLE METHODS. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 46(3), 515–534. https://doi.org/10.1051/m2an/2011054 Chertock, A., Kurganov, A., Wang, X., & Wu, Y. (2012). ON A CHEMOTAXIS MODEL WITH SATURATED CHEMOTACTIC FLUX. KINETIC AND RELATED MODELS, 5(1), 51–95. https://doi.org/10.3934/krm.2012.5.51 Chertock, A., Fellner, K., Kurganov, A., Lorz, A., & Markowich, P. A. (2012). Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach. Journal of Fluid Mechanics, 694, 155–190. https://doi.org/10.1017/jfm.2011.534 Chertock, A., Christov, C. I., & Kurganov, A. (2011). Central-upwind schemes for Boussinesq paradigm equations. In Computational science and high performance computing IV (Vol. 115, pp. 267–281). https://doi.org/10.1007/978-3-642-17770-5_20 Chertock, A., Doering, C. R., Kashdan, E., & Kurganov, A. (2010). A Fast Explicit Operator Splitting Method for Passive Scalar Advection. JOURNAL OF SCIENTIFIC COMPUTING, 45(1-3), 200–214. https://doi.org/10.1007/s10915-010-9381-2 Chertock, A., & Kurganov, A. (2010). On splitting-based numerical methods for convection-diffusion equations. In Numerical Methods for Balance Laws, Quaderni di Matematica, Aracne editrice S.r.l (Vol. 24, p. 303). Roma. Chertock, A., & Kurganov, A. (2010). On splitting-based numerical methods for convection-diffusionequations. In G. Puppo & G. Russo (Eds.), Numerical Methods for Balance Laws (p. 303). Caserta: Dipartimento di matematica della Seconda Universitá di Napoli. Chertock, A., & Kurganov, A. (2009). Computing multivalued solutions of pressureless gas dynamics by deterministic particle methods. Commun. Comput. Phys., 5(2-4), 565–581. Retrieved from http://global-sci.org/intro/article_detail/cicp/7750.html Chertock, A., & Kurganov, A. (2009). Computing multivalued solutions of pressureless gas dynamics by deterministic particle methods. Communications in Computational Physics, 5(2-4), 565–581. Chertock, A., Kurganov, A., & Petrova, G. (2009, January 30). Fast explicit operator splitting method for convection-diffusion equations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Vol. 59, pp. 309–332. https://doi.org/10.1002/fld.1355 Chertock, A., & Kurganov, A. (2009). On splitting-based numerical methods for convection-diffusion equations. In Numerical methods for balance laws (Vol. 24, pp. 303–343). Dept. Math., Seconda Univ. Napoli, Caserta. Chertock, A., & Kurganov, A. (2008). A SIMPLE EULERIAN FINITE-VOLUME METHOD FOR COMPRESSIBLE FLUIDS IN DOMAINS WITH MOVING BOUNDARIES. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 6(3), 531–556. https://doi.org/10.4310/CMS.2008.v6.n3.a1 Chertock, A., & Kurganov, A. (2008). A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. NUMERISCHE MATHEMATIK, 111(2), 169–205. https://doi.org/10.1007/s00211-008-0188-0 Chertock, A., Karni, S., & Kurganov, A. (2008). INTERFACE TRACKING METHOD FOR COMPRESSIBLE MULTIFLUIDS. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 42(6), 991–1019. https://doi.org/10.1051/m2an:2008036 Chertock, A., Gottlieb, D., & Solomonoff, A. (2008). Modified Optimal Prediction and its Application to a Particle-Method Problem. JOURNAL OF SCIENTIFIC COMPUTING, 37(2), 189–201. https://doi.org/10.1007/s10915-008-9242-4 Chertock, A., Kashdan, E., Kurganov, A., BenzoniGavage, S., & Serre, D. (2008). Propagation of Diffusing Pollutant by a Hybrid Eulerian–Lagrangian Method. In Hyperbolic Problems: Theory, Numerics, Applications (pp. 371–379). https://doi.org/10.1007/978-3-540-75712-2_33 Chertock, A., Kurganov, A., & Rykov, Y. (2007). A new sticky particle method for pressureless gas dynamics. SIAM JOURNAL ON NUMERICAL ANALYSIS, 45(6), 2408–2441. https://doi.org/10.1137/050644124 Chertock, A., Kurganov, A., & Petrova, G. (2006, June). Finite-volume-particle methods for models of transport of pollutant in shallow water. JOURNAL OF SCIENTIFIC COMPUTING, Vol. 27, pp. 189–199. https://doi.org/10.1007/s10915-005-9060-x Chertock, A., & Kurganov, A. (2006). On a practical implementation of particle methods. APPLIED NUMERICAL MATHEMATICS, Vol. 56, pp. 1418–1431. https://doi.org/10.1016/j.apnum.2006.03.024 Chertock, A., & Kurganov, A. (2005). Conservative locally moving mesh method for multifluid flows. In Finite Volumes for Complex Applications IV (pp. 273–284). ISTE, London. Chertock, A., Kurganov, A., & Petrova, G. (2005). Fast explicit operator splitting method. Application to the polymer system. In Finite Volumes for Complex Applications IV: Vol. IV (pp. 63–72). ISTE, London. Chertock, A., Kurganov, A., & Rosenau, P. (2005). On degenerate saturated-diffusion equations with convection. NONLINEARITY, 18(2), 609–630. https://doi.org/10.1088/0951-7715/18/2/009 Chertock, A., & Levy, D. (2005). On wavelet-based numerical homogenization. MULTISCALE MODELING & SIMULATION, 3(1), 65–88. https://doi.org/10.1137/030600783 Chertock, A., & Kurganov, A. (2004). On a hybrid finite-volume-particle method. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 38(6), 1071–1091. https://doi.org/10.1051/m2an:2004051 Chertock, A., Kurganov, A., & Rosenau, P. (2003). Formation of discontinuities in flux-saturated degenerate parabolic equations. NONLINEARITY, 16(6), 1875–1898. https://doi.org/10.1088/0951-7715/16/6/301 Chertock, A., & Levy, D. (2002). A Particle Method for the KdV Equation. Journal of Scientific Computing, 17(1-4), 491–499. https://doi.org/10.1023/A:1015106210404 Chertock, A. (2002). On the stability of a class of self-similar solutions to the filtration-absorption equation. European Journal of Applied Mathematics, 13(2), 179–194. https://doi.org/10.1017/s095679250100482x Chertock, A., & Levy, D. (2002). Particle methods for the KdV equation. Journal of Scientific Computing, 17, 491–499. Chertock, A., & Levy, D. (2001). Particle Methods for Dispersive Equations. Journal of Computational Physics, 171(2), 708–730. https://doi.org/10.1006/jcph.2001.6803 Barenblatt, G. I., Bertsch, M., Chertock, A. E., & Prostokishin, V. M. (2000). Self-similar intermediate asymptotics for a degenerate parabolic filtration-absorption equation. Proceedings of the National Academy of Sciences, 97(18), 9844–9848. https://doi.org/10.1073/pnas.97.18.9844 Abarbanel, S. S., & Chertock, A. E. (2000). Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, I. Journal of Computational Physics, 160(1), 42–66. https://doi.org/10.1006/jcph.2000.6420 Abarbanel, S. S., Chertock, A. E., & Yefet, A. (2000). Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, II. Journal of Computational Physics, 160(1), 67–87. https://doi.org/10.1006/jcph.2000.6421 Karamzin, Y. N., Trofimov, V. A., & Chertok, A. È. (1991). An algorithm for the numerical solution of equations describing processes in photoreceivers. Mat. Model., 3(10), 95–103. Chertock, A., Karamzin, Y., & Trofimov, V. (1991). On a numerical algorithm for nonlinear differential equations describing some processes in photoreceivers. Journal of Mathematical Modeling, 3, 95–103.