@article{schaaf_polkoff_carter_stewart_sheahan_freund_ginzel_snyder_roper_piedrahita_et al._2023, title={A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease}, volume={37}, ISSN={["1530-6860"]}, DOI={10.1096/fj.202300223R}, abstractNote={AbstractIntestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein‐Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence‐activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5‐H2B‐GFP and wild‐type pigs. Ileum and colon LGR5‐H2B‐GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5‐H2B‐GFP colonoids. Crypt‐base, green fluorescent protein (GFP) expressing cells co‐localized with ISC biomarkers. LGR5‐H2B‐GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5‐H2B‐GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5‐H2B‐GFP pig crypt‐base cells. LGR5‐H2B‐GFP/APCnull colonoids had cystic growth in WNT/R‐spondin‐depleted media and significantly upregulated WNT/β‐catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5‐H2B‐GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt‐base FISH, underscore the significance of this novel LGR5‐H2B‐GFP pig to translational ISC research.}, number={6}, journal={FASEB JOURNAL}, author={Schaaf, Cecilia R. and Polkoff, Kathryn M. and Carter, Amber and Stewart, Amy S. and Sheahan, Breanna and Freund, John and Ginzel, Joshua and Snyder, Joshua C. and Roper, Jatin and Piedrahita, Jorge A. and et al.}, year={2023}, month={Jun} } @article{carter_popowski_cheng_greenbaum_ligler_moatti_2021, title={Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation}, volume={9}, ISSN={["2576-3113"]}, url={https://doi.org/10.1089/bioe.2021.0019}, DOI={10.1089/bioe.2021.0019}, abstractNote={Serious bone injuries have devastating effects on the lives of patients including limiting working ability and high cost. Orthopedic implants can aid in healing injuries to an extent that exceeds the natural regenerative capabilities of bone to repair fractures or large bone defects. Autografts and allografts are the standard implants used, but disadvantages such as donor site complications, a limited quantity of transplantable bone, and high costs have led to an increased demand for synthetic bone graft substitutes. However, replicating the complex physiological properties of biological bone, much less recapitulating its complex tissue functions, is challenging. Extensive efforts to design biocompatible implants that mimic the natural healing processes in bone have led to the investigation of piezoelectric smart materials because the bone has natural piezoelectric properties. Piezoelectric materials facilitate bone regeneration either by accumulating electric charge in response to mechanical stress, which mimics bioelectric signals through the direct piezoelectric effect or by providing mechanical stimulation in response to electrical stimulation through the converse piezoelectric effect. Although both effects are beneficial, the converse piezoelectric effect can address bone atrophy from stress shielding and immobility by improving the mechanical response of a healing defect. Mechanical stimulation has a positive impact on bone regeneration by activating cellular pathways that increase bone formation and decrease bone resorption. This review will highlight the potential of the converse piezoelectric effect to enhance bone regeneration by discussing the activation of beneficial cellular pathways, the properties of piezoelectric biomaterials, and the potential for the more effective administration of the converse piezoelectric effect using wireless control.}, journal={BIOELECTRICITY}, publisher={Mary Ann Liebert Inc}, author={Carter, Amber and Popowski, Kristen and Cheng, Ke and Greenbaum, Alon and Ligler, Frances S. and Moatti, Adele}, year={2021}, month={Sep} }