@article{furlong_alsafadi_palmtag_godfrey_wu_2025, title={Data-driven prediction and uncertainty quantification of PWR crud-induced power shift using convolutional neural networks}, volume={316}, ISSN={["1873-6785"]}, url={https://doi.org/10.1016/j.energy.2025.134447}, DOI={10.1016/j.energy.2025.134447}, journal={ENERGY}, author={Furlong, Aidan and Alsafadi, Farah and Palmtag, Scott and Godfrey, Andrew and Wu, Xu}, year={2025}, month={Feb} } @article{akins_furlong_kohler_clifford_brady_alsafadi_wu_2024, title={ARTISANS-Artificial Intelligence for Simulation of Advanced Nuclear Systems for Nuclear Fission Technology}, volume={423}, ISSN={["1872-759X"]}, url={https://doi.org/10.1016/j.nucengdes.2024.113170}, DOI={10.1016/j.nucengdes.2024.113170}, journal={NUCLEAR ENGINEERING AND DESIGN}, author={Akins, Alexandra and Furlong, Aidan and Kohler, Lauren and Clifford, Jason and Brady, Christopher and Alsafadi, Farah and Wu, Xu}, year={2024}, month={Jul} } @article{furlong_watson_2024, title={Analysis of the LatticeNet neural network framework’s performance using prediction-calculated temperature coefficients in PWR assemblies}, url={https://doi.org/10.1016/j.anucene.2024.110498}, DOI={10.1016/j.anucene.2024.110498}, journal={Annals of Nuclear Energy}, author={Furlong, Aidan and Watson, Justin}, year={2024}, month={Aug} } @article{furlong_watson_shriver_2023, title={Investigation of Monte Carlo trained CNNs for neutronics predictions of typical and atypical PWR assemblies}, volume={166}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85178959995&partnerID=MN8TOARS}, DOI={10.1016/j.pnucene.2023.104961}, journal={Progress in Nuclear Energy}, author={Furlong, A. and Watson, J. and Shriver, F.}, year={2023} } @inproceedings{furlong_alsafadi_kohler_wu_palmtag_godfrey_hayes_2023, title={Machine Learning-based Prediction of Crud Buildup Locations in Pressurized Water Reactors}, volume={129}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85180630144&partnerID=MN8TOARS}, DOI={10.13182/T129-42733}, booktitle={Transactions of the American Nuclear Society}, author={Furlong, A. and Alsafadi, F. and Kohler, L. and Wu, X. and Palmtag, S. and Godfrey, A. and Hayes, S.}, year={2023}, pages={456–459} } @inproceedings{predicting pwr fuel assembly cips susceptibility with convolutional neural networks: performance and uncertainty quantification_2024, booktitle={International Conference on Physics of Reactors (PHYSOR 2024)}, year={2024}, month={Apr} } @phdthesis{prediction of cips susceptibility in pwr assemblies using 3d convolutional neural networks_2024, url={https://www.lib.ncsu.edu/resolver/1840.20/41647}, journal={North Carolina State University Libraries}, year={2024}, month={Mar} } @inproceedings{furlong_shriver_watson_2022, title={Using Neural Networks to Predict Pin Powers in Reflective PWR Fuel Assemblies with Varying Pin Size}, booktitle={International Conference on Physics of Reactors 2022}, author={Furlong, A. and Shriver, F. and Watson, J.K.}, year={2022}, month={May}, pages={15–20,} }