@article{kolli_parashar_kokkonda_anurag_kumar_bhattacharya_veliadis_2021, title={Design Considerations of Three Phase Active Front End Converter for 13.8 kV Asynchronous Microgrid Power Conditioning System enabled by Series Connection of Gen-3 10 kV SiC MOSFETs}, ISSN={["2329-3721"]}, DOI={10.1109/ECCE47101.2021.9594975}, abstractNote={The recent growth in power generation using renewable energy sources has led to extensive research and development of robust and resilient power converters, which can integrate them with the medium voltage (MV) grids (13.8 kV,60Hz). Conventional power converters need a line frequency transformer for their integration to the MV grid, which increases the overall footprint and installation cost of the system. Therefore, a compact and lightweight alternative are required for largescale integration of the renewable energy source to the MV grid. With the advent of high voltage SiC MOSFETs, the operating frequency of grid converter can be increased up to 10-20 kHz, thus significantly reducing the size of filter inductors. The use of these devices in multi-level configurations with series-connected devices facilitates the design of power converters that can interface directly with MV grid, eliminating the need for line frequency transformers. The converter presented in this paper is designed to interface a 13.8 kV three-phase grid to a dc link of 24 kV. A three-level neutral point clamped (3L-NPC) topology enabled by series-connected 10 kV 15 A SiC MOSFETs and 10 kV 15 A SiC JBS diodes is presented. This paper focuses on the advantages, design considerations, and challenges associated with a medium voltage 3L-NPC converter. Experimental results show the successful operation of series-connected 10 kV 15 A SiC MOSFETs and JBS Diodes at medium voltage levels and highlights the series connection that is realized with snubber circuits for voltage balancing.}, journal={2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE)}, author={Kolli, Nithin and Parashar, Sanket and Kokkonda, Raj Kumar and Anurag, Anup and Kumar, Ashish and Bhattacharya, Subhashish and Veliadis, Victor}, year={2021}, pages={1211–1218} } @article{agarwal_anurag_kolli_kumar_bhattacharya_2021, title={Design considerations of 6.5kV enabled three-level and 10kV enabled two-level medium voltage SST}, ISSN={["2329-3721"]}, DOI={10.1109/ECCE47101.2021.9595367}, abstractNote={The advent of medium voltage silicon carbide (SiC) power semiconductor devices (6.5kV and 10 kV) has opened up the possibilities of looking into different converter topologies for the MV grid interfaced applications. A medium voltage mobile utility support equipment-based three-phase solid-state transformer (MUSE-SST) system is one such application aimed to interconnect a three-phase 4160 V/60 Hz grid to a three-phase 480 V/60 Hz grid to provide a shore-to-ship power interface for naval vessels. The system can be realized by both 10 kV SiC MOSFET and 6.5kV SiC MOSFET employing a two-level and three-level architecture respectively. The aim of this paper is to understand the thermal challenges and provides detailed design considerations of the two MV device-based architectures for a system scale-up to 500kVA rating. Device characteristics for both 6.5kV and 10kV SiC MOSFETs have been evaluated from experimental results. Based on these experimental data, the thermal performance of these devices enabled converter architecture is compared using elctro-thermal simulation-based loss comparison.}, journal={2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE)}, author={Agarwal, Apoorv and Anurag, Anup and Kolli, Nithin and Kumar, Ashish and Bhattacharya, Subhashish}, year={2021}, pages={282–289} } @article{kumar_kokkonda_bhattacharya_baliga_veliadis_2021, title={High Voltage Output Characteristics and Short Circuit Robustness of HV SiC MOSFETs}, ISSN={["2329-3721"]}, DOI={10.1109/ECCE47101.2021.9595821}, abstractNote={The short circuit characteristics of the recently developed high voltage (HV) SiC MOSFETs are essential to ensure the proper functioning of the power converters during the short circuit fault conditions. The short circuit failure time can be estimated using the HV output characteristics of the MOSFETs with reasonable assumptions. The HV output characteristics of the 3.3 kV, 6.5 kV, and 10 kV SiC MOSFETs, developed by Wolfspeed, are measured for the first time. The estimated short circuit failure time is 3.5 μs, 7.4 μs and 8.1 μs for the 3.3 kV, 6.5 kV, and 10 kV SiC MOSFETs, respectively at the gate bias of 15 V. The analytical results are closely matching with the experimental short circuit failure results of the 6.5 kV SiC MOSFET. The short circuit robustness of the single 6.5 kV SiC MOSFET is found to be superior to the two series-connected 3.3 kV SiC MOSFETs.}, journal={2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE)}, author={Kumar, Ashish and Kokkonda, Raj Kumar and Bhattacharya, Subhashish and Baliga, Jayant and Veliadis, Victor}, year={2021}, pages={5277–5282} }