@article{yadav_butler_yamamoto_patil_lloyd_scott_2023, title={CRISPR/Cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest Drosophila suzukii}, volume={120}, ISSN={0027-8424 1091-6490}, url={http://dx.doi.org/10.1073/pnas.2301525120}, DOI={10.1073/pnas.2301525120}, abstractNote={Significance Spotted wing drosophila (Drosophila suzukii) is a vinegar fly with a worldwide distribution that does significant economic damage to soft-skinned fruits. We made and evaluated split CRISPR homing gene drives that target the conserved female-specific exon of the doublesex gene, which is essential for sexual development in Drosophila. Our results suggest that homing gene drives could provide a cost-effective approach for suppression of D. suzukii populations.}, number={25}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Yadav, Amarish K. and Butler, Cole and Yamamoto, Akihiko and Patil, Anandrao A. and Lloyd, Alun L. and Scott, Maxwell J.}, year={2023}, month={Jun} } @article{yadav_asokan_yamamoto_patil_scott_2023, title={Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains}, volume={10}, ISSN={0962-1075 1365-2583}, url={http://dx.doi.org/10.1111/imb.12879}, DOI={10.1111/imb.12879}, abstractNote={Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. D. suzukii is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of D. suzukii have been made, the development of transgenic D. suzukii strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism D. melanogaster. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes white, cinnabar and sepia, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in cinnabar and sepia showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the cinnabar and sepia strains were comparable with the wild type. Although white mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The cinnabar, sepia and white mutant strains developed in this study should facilitate future genetic studies in D. suzukii and the development of strains for genetic control of this pest.}, journal={Insect Molecular Biology}, publisher={Wiley}, author={Yadav, Amarish K. and Asokan, Ramasamy and Yamamoto, Akihiko and Patil, Anandrao A. and Scott, Maxwell J.}, year={2023}, month={Oct} } @article{yamamoto_yadav_scott_2022, title={Evaluation of Additional Drosophila suzukii Male-Only Strains Generated Through Remobilization of an FL19 Transgene}, volume={10}, ISSN={["2296-4185"]}, url={https://europepmc.org/articles/PMC8965018}, DOI={10.3389/fbioe.2022.829620}, abstractNote={Drosophila suzukii (D. suzukii) (Matsumura, 1931; Diptera: Drosophilidae), also known as spotted wing Drosophila, is a worldwide pest of fruits with soft skins such as blueberries and cherries. Originally from Asia, D. suzukii is now present in the Americas and Europe and has become a significant economic pest. Growers largely rely on insecticides for the control of D. suzukii. Genetic strategies offer a species-specific environmentally friendly way for suppression of D. suzukii populations. We previously developed a transgenic strain of D. suzukii that produced only males on a diet that did not contain tetracycline. The strain carried a single copy of the FL19 construct on chromosome 3. Repeated releases of an excess of FL19 males led to suppression of D. suzukii populations in laboratory cage trials. Females died as a consequence of overexpression of the tetracycline transactivator (tTA) and tTA-activated expression of the head involution defective proapoptotic gene. The aim of this study was to generate additional male-only strains that carried two copies of the FL19 transgene through crossing the original line with a piggyBac jumpstarter strain. Males that carried either two chromosome 3 or a singleX-linked transgene were identified through stronger expression of the red fluorescent protein marker gene. The brighter fluorescence of the X-linked lines was likely due to dosage compensation of the red fluorescent protein gene. In total, four X-linked lines and eleven lines with two copies on chromosome 3 were obtained, of which five were further examined. All but one of the strains produced only males on a diet without tetracycline. When crossed with wild type virgin females, all of the five two copy autosomal strains examined produced only males. However, the single copy X-linked lines did not show dominant female lethality. Five of the autosomal lines were further evaluated for productivity (egg to adult) and male competition. Based on these results, the most promising lines have been selected for future population suppression experiments with strains from different geographical locations.}, journal={FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY}, author={Yamamoto, Akihiko and Yadav, Amarish K. and Scott, Maxwell J.}, year={2022}, month={Mar} }