@article{forfora_azuaje_vivas_vera_brito_venditti_kelley_tu_woodley_gonzalez_2024, title={Evaluating biomass sustainability: Why below-ground carbon sequestration matters}, volume={439}, ISSN={["1879-1786"]}, url={https://doi.org/10.1016/j.jclepro.2024.140677}, DOI={10.1016/j.jclepro.2024.140677}, abstractNote={Biomass, as a raw material, has been identified as a crucial component of decarbonization strategies to mitigate climate change. Decisions on which biomass should be targeted for different purposes are dependent on variables such as availability, chemical composition, and sustainability. Consumer perception often positions non-wood sources, such as bamboo, as environmentally preferable feedstocks for fiber-based product production. Yet, this perceived environmental benefit lacks robust scientific substantiation and standardized methodologies. This study addresses this gap by conducting a cradle-to-gate life cycle assessment (LCA) of twelve biomass production systems encompassing tree plantations, dedicated crops, and agricultural residues for energy and bioproducts manufacture. The evaluated feedstocks include southern softwood, wheat straw, rice straw, rice husk, hemp hurd, sugarcane bagasse, switchgrass, biomass sorghum (United States), eucalyptus (Brazil), bamboo (China), and northern softwood (Canada). Incorporating a critical yet often overlooked factor, this LCA integrates the potential soil organic carbon sequestration (SOC) via below-ground biomass for each biomass type. This consideration significantly alters the estimated carbon intensity per ton of feedstock, potentially reshaping sustainability perceptions as certain systems emerge as carbon sinks. From a cradle-to-farm gate perspective, the assessed global warming potential for biomass production spans 12–245 kg CO2eq per oven-dry ton (ODt), factoring only anthropogenic emissions. However, when accounting for SOC sequestration, the range shifts to −170 to 228 kg CO2eq per ODt, highlighting the potential role of biomass to act as carbon sink systems. By illuminating the dynamic influence of SOC sequestration, this study contributes to a more comprehensive understanding of biomass-related carbon emissions, shedding light on pathways to mitigate environmental impact.}, journal={JOURNAL OF CLEANER PRODUCTION}, author={Forfora, Naycari and Azuaje, Ivana and Vivas, Keren A. and Vera, Ramon E. and Brito, Amelys and Venditti, Richard and Kelley, Stephen and Tu, Qingshi and Woodley, Alex and Gonzalez, Ronalds}, year={2024}, month={Feb} } @article{brito_suarez_pifano_reisinger_wright_saloni_kelley_gonzalez_venditti_jameel_2023, title={Environmental Life Cycle Assessment of Premium and Ultra Hygiene Tissue Products in the United States}, volume={18}, ISSN={["1930-2126"]}, DOI={10.15376/biores.18.2.4006-4031}, abstractNote={Under the controversial concern of using virgin fibers in hygiene tissue products, mostly Bleached Eucalyptus Kraft (BEK) and Northern Bleached Softwood Kraft (NBSK), consumers are responding by purchasing self-labeled sustainable products. As of today, there are no established sustainability reported results to inform consumers about the carbon footprint of hygiene tissue. To fill this gap, this study used Life Cycle Assessment to evaluate the environmental impacts across the supply chain (cradle to gate) to produce Premium and Ultra grades of bath tissue, including the production of feedstock, pulp production, and tissue production stages, with focus on Global Warming Potential (GWP). The results showed that one air-dried metric ton (ADmt) of BEK pulp had an associated GWP of 388 kgCO2eq, whereas one ADmt of NBSK pulp presented values ranging between 448 and 596 kgCO2eq, depending on the emissions allocation methodology used. It was estimated that the GWP of one finished metric ton of tissue weighted average could range from 1,392 to 3,075 kgCO2eq depending on mill location, electricity source, and machine technology. These results provide an understanding of the factors affecting the environmental impact of hygiene tissue products, which could guide manufacturers and consumers on decisions that impact their carbon footprint.}, number={2}, journal={BIORESOURCES}, author={Brito, Amelys and Suarez, Antonio and Pifano, Alonzo and Reisinger, Lee and Wright, Jeff and Saloni, Daniel and Kelley, Stephen and Gonzalez, Ronalds and Venditti, Richard and Jameel, Hasan}, year={2023}, month={May}, pages={4006–4031} }