@article{conway_crosby_hren_southerland_lee_lunin_alahuhta_himmel_bomble_adams_et al._2018, title={Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic Caldicellulosiruptor species}, volume={64}, ISSN={["1547-5905"]}, DOI={10.1002/aic.16354}, abstractNote={Biological hydrolysis of microcrystalline cellulose is an uncommon feature in the microbial world, especially among bacteria and archaea growing optimally above 70°C (the so‐called extreme thermophiles). In fact, among this group only certain species in the genus Caldicellulosiruptor are capable of rapid and extensive cellulose degradation. Four novel multidomain glycoside hydrolases (GHs) from Caldicellulosiruptor morganii and Caldicellulosiruptor danielii were produced recombinantly in Caldicellulosiruptor bescii and characterized. These GHs are structurally organized with two or three catalytic domains flanking carbohydrate binding modules from Family 3. Collectively, these enzymes represent GH families 5, 9, 10, 12, 44, 48, and 74, and hydrolyze crystalline cellulose, glucan, xylan, and mannan, the primary carbohydrates in plant biomass. Degradation of microcrystalline cellulose by cocktails of GHs from three Caldicellulosiruptor species demonstrated that synergistic interactions enable mixtures of multiple enzymes to outperform single enzymes, suggesting a community mode of action for lignocellulose utilization in thermal environments. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4218–4228, 2018}, number={12}, journal={AICHE JOURNAL}, author={Conway, Jonathan M. and Crosby, James R. and Hren, Andrew P. and Southerland, Robert T. and Lee, Laura L. and Lunin, Vladimir V. and Alahuhta, Petri and Himmel, Michael E. and Bomble, Yannick J. and Adams, Michael W. W. and et al.}, year={2018}, month={Dec}, pages={4218–4228} }