Cynthia Vinzant Anari, N., Gharan, S. O., & Vinzant, C. (2021). LOG-CONCAVE POLYNOMIALS, I: ENTROPY AND A DETERMINISTIC APPROXIMATION ALGORITHM FOR COUNTING BASES OF MATROIDS. DUKE MATHEMATICAL JOURNAL, 170(16), 3459–3504. https://doi.org/10.1215/00127094-2020-0091 Anari, N., Liu, K., Gharan, S. O., Vinzant, C., & Vuong, T.-D. (2021). Log-Concave Polynomials IV: Approximate Exchange, Tight Mixing Times, and Near-Optimal Sampling of Forests. STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, pp. 408–420. https://doi.org/10.1145/3406325.3451091 Anari, N., & Vinzant, C. (2021). Log-Concave Polynomials in Theory and Applications (Tutorial). STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, pp. 12–12. https://doi.org/10.1145/3406325.3465351 Rincon, F., Vinzant, C., & Yu, J. (2021). Positively hyperbolic varieties, tropicalization, and positroids. ADVANCES IN MATHEMATICS, 383. https://doi.org/10.1016/j.aim.2021.107677 Brake, D. A., Hauenstein, J. D., & Vinzant, C. (2019). Computing complex and real tropical curves using monodromy. JOURNAL OF PURE AND APPLIED ALGEBRA, 223(12), 5232–5250. https://doi.org/10.1016/j.jpaa.2019.03.019 Anari, N., Liu, K., Gharan, S. O., & Vinzant, C. (2019). Log-Concave Polynomials II: High-Dimensional Walks and an FPRAS for Counting Bases of a Matroid. PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), pp. 1–12. https://doi.org/10.1145/3313276.3316385 Blekherman, G., Plaumann, D., Sinn, R., & Vinzant, C. (2019). Low-Rank Sum-of-Squares Representations on Varieties of Minimal Degree. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019(1), 33–54. https://doi.org/10.1093/imrn/rnx113 Anari, N., Gharan, S. O., & Vinzant, C. (2018). Log-Concave Polynomials, Entropy, and a Deterministic Approximation Algorithm for Counting Bases of Matroids. 2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), pp. 35–46. https://doi.org/10.1109/FOCS.2018.00013 Vinzant, C. (2015). A small frame and a certificate of its injectivity. 2015 International Conference on Sampling Theory and Applications (SAMPTA), 197–200. https://doi.org/10.1109/sampta.2015.7148879 Conca, A., Edidin, D., Hering, M., & Vinzant, C. (2015). An algebraic characterization of injectivity in phase retrieval. Applied and Computational Harmonic Analysis, 38(2), 346–356. https://doi.org/10.1016/J.ACHA.2014.06.005 Plaumann, D., Sinn, R., Speyer, D. E., & Vinzant, C. (2015). Computing Hermitian determinantal representations of hyperbolic curves. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 25(8), 1327–1336. https://doi.org/10.1142/s0218196715500435 Kummer, M., Plaumann, D., & Vinzant, C. (2015). Hyperbolic polynomials, interlacers, and sums of squares. Mathematical Programming, 153(1), 223–245. https://doi.org/10.1007/S10107-013-0736-Y Ottem, J. C., Ranestad, K., Sturmfels, B., & Vinzant, C. (2015). Quartic spectrahedra. MATHEMATICAL PROGRAMMING, 151(2), 585–612. https://doi.org/10.1007/s10107-014-0844-3 Plaumann, D., & Vinzant, C. (2013). Determinantal representations of hyperbolic plane curves: An elementary approach. Journal of Symbolic Computation, 57, 48–60. https://doi.org/10.1016/J.JSC.2013.05.004 Sanyal, R., Sturmfels, B., & Vinzant, C. (2013). The entropic discriminant. Advances in Mathematics, 244, 678–707. https://doi.org/10.1016/J.AIM.2013.05.019 Vinzant, C. (2012). Real radical initial ideals. Journal of Algebra, 352(1), 392–407. https://doi.org/10.1016/j.jalgebra.2011.11.028 De Loera, J. A., Sturmfels, B., & Vinzant, C. (2012). The Central Curve in Linear Programming. Foundations of Computational Mathematics, 12(4), 509–540. https://doi.org/10.1007/S10208-012-9127-7 Vinzant, C. (2011). Edges of the Barvinok–Novik Orbitope. Discrete & Computational Geometry, 46(3), 479–487. https://doi.org/10.1007/S00454-011-9351-Y Plaumann, D., Sturmfels, B., & Vinzant, C. (2011). Quartic curves and their bitangents. Journal of Symbolic Computation, 46(6), 712–733. https://doi.org/10.1016/j.jsc.2011.01.007 Vinzant, C. (2009). Lower bounds for optimal alignments of binary sequences. Discrete Applied Mathematics, 157(15), 3341–3346. https://doi.org/10.1016/j.dam.2009.06.028