Casey Theriot Foley, M. H., Walker, M. E., Stewart, A. K., O'Flaherty, S., Gentry, E. C., Patel, S., … Theriot, C. M. (2023, March 13). Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. NATURE MICROBIOLOGY, Vol. 3. https://doi.org/10.1038/s41564-023-01337-7 Icho, S., Ward, J. S., Tam, J., Kociolek, L. K., Theriot, C. M., & Melnyk, R. A. (2023). Intestinal bile acids provide a surmountable barrier against C. difficile TcdB-induced disease pathogenesis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 120(19). https://doi.org/10.1073/pnas.2301252120 Kisthardt, S. C., Thanissery, R., Pike, C. M., Foley, M. H., & Theriot, C. M. (2023). The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota. JOURNAL OF BACTERIOLOGY, 205(9). https://doi.org/10.1128/jb.00180-23 Stewart, A. K., Foley, M. H., Dougherty, M. K., Mcgill, S. K., Gulati, A. S., Gentry, E. C., … Baker, E. S. (2023). Using Multidimensional Separations to Distinguish Isomeric Amino Acid-Bile Acid Conjugates and Assess Their Presence and Perturbations in Model Systems. ANALYTICAL CHEMISTRY, 95(41), 15357–15366. https://doi.org/10.1021/acs.analchem.3c03057 Cai, Y., Shen, X., Lu, L., Yan, H., Huang, H., Gaule, P., … Johnson, C. H. (2022). Bile acid distributions, sex-specificity, and prognosis in colorectal cancer. BIOLOGY OF SEX DIFFERENCES, 13(1). https://doi.org/10.1186/s13293-022-00473-9 Sheahan, B. J., Theriot, C. M., Cortes, J. E., & Dekaney, C. M. (2022). Prolonged oral antimicrobial administration prevents doxorubicin-induced loss of active intestinal stem cells. GUT MICROBES, 14(1). https://doi.org/10.1080/19490976.2021.2018898 Pike, C. M., Tam, J., Melnyk, R. A., & Theriot, C. M. (2022, July 7). Tauroursodeoxycholic Acid Inhibits Clostridioides difficile Toxin-Induced Apoptosis. INFECTION AND IMMUNITY. https://doi.org/10.1128/iai.00153-22 Reed, A. D., Fletcher, J. R., Huang, Y. Y., Thanissery, R., Rivera, A. J., Parsons, R. J., … Theriot, C. M. (2022). The Stickland Reaction Precursor trans-4-Hydroxy-l-Proline Differentially Impacts the Metabolism of Clostridioides difficile and Commensal Clostridia. MSPHERE, 7(2). https://doi.org/10.1128/msphere.00926-21 Fletcher, J. R., Pike, C. M., Parsons, R. J., Rivera, A. J., Foley, M. H., McLaren, M. R., … Theriot, C. M. (2021). Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. NATURE COMMUNICATIONS, 12(1). https://doi.org/10.1038/s41467-020-20746-4 Reed, A. D., & Theriot, C. M. (2021). [Review of Contribution of Inhibitory Metabolites and Competition for Nutrients to Colonization Resistance against Clostridioides difficile by Commensal Clostridium]. MICROORGANISMS, 9(2). https://doi.org/10.3390/microorganisms9020371 Foley, M. H., O'Flaherty, S., Allen, G., Rivera, A. J., Stewart, A. K., Barrangou, R., & Theriot, C. M. (2021). Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 118(6). https://doi.org/10.1073/pnas.2017709118 Pike, C. M., & Theriot, C. M. (2021). Mechanisms of Colonization Resistance Against Clostridioides difficile. JOURNAL OF INFECTIOUS DISEASES, 223, S194–S200. https://doi.org/10.1093/infdis/jiaa408 Winston, J. A., Rivera, A., Cai, J., Patterson, A. D., & Theriot, C. M. (2021). Secondary bile acid ursodeoxycholic acid alters weight, the gut microbiota, and the bile acid pool in conventional mice. PLOS ONE, 16(2). https://doi.org/10.1371/journal.pone.0246161 Thanissery, R., McLaren, M. R., Rivera, A., Reed, A. D., Betrapally, N. S., Burdette, T., … Theriot, C. M. (2020). Clostridioides difficile carriage in animals and the associated changes in the host fecal microbiota. ANAEROBE, 66. https://doi.org/10.1016/j.anaerobe.2020.102279 Winston, J. A., & Theriot, C. M. (2020). [Review of Diversification of host bile acids by members of the gut microbiota]. GUT MICROBES, 11(2), 158–171. https://doi.org/10.1080/19490976.2019.1674124 Tam, J., Icho, S., Utama, E., Orrell, K. E., Gomez-Biagi, R. F., Theriot, C. M., … Melnyk, R. A. (2020). Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 117(12), 6792–6800. https://doi.org/10.1073/pnas.1916965117 Theriot, C. M., & Petri, W. A., Jr. (2020, June 25). Role of Microbiota-Derived Bile Acids in Enteric Infections. CELL, Vol. 181, pp. 1452–1454. https://doi.org/10.1016/j.cell.2020.05.033 Blake, S., Thanissery, R., Rivera, A. J., Hixon, M. S., Lin, M., Theriot, C. M., & Janda, K. D. (2020). Salicylanilide Analog Minimizes Relapse of Clostridioides difficile Infection in Mice. JOURNAL OF MEDICINAL CHEMISTRY, 63(13), 6898–6908. https://doi.org/10.1021/acs.jmedchem.0c00123 Winston, J. A., Rivera, A. J., Cai, J., Thanissery, R., Montgomery, S. A., Patterson, A. D., & Theriot, C. M. (2020). Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids. INFECTION AND IMMUNITY, 88(6). https://doi.org/10.1128/IAI.00045-20 Foley, M. H., O'Flaherty, S., Barrangou, R., & Theriot, C. M. (2019). Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLOS PATHOGENS, 15(3). https://doi.org/10.1371/journal.ppat.1007581 Foster, D. M., Jacob, M. E., Farmer, K. A., Callahan, B. J., Theriot, C. M., Kathariou, S., … Papich, M. G. (2019). Ceftiofur formulation differentially affects the intestinal drug concentration, resistance of fecal Escherichia coli, and the microbiome of steers. PLOS ONE, 14(10). https://doi.org/10.1371/journal.pone.0223378 Theriot, C. M., & Fletcher, J. R. (2019, September 3). Human fecal metabolomic profiling could inform Clostridioides difficile infection diagnosis and treatment. JOURNAL OF CLINICAL INVESTIGATION, Vol. 129, pp. 3539–3541. https://doi.org/10.1172/JCI130008 Thanissery, R., Zeng, D., Doyle, R. G., & Theriot, C. M. (2018). A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile. FRONTIERS IN MICROBIOLOGY, 9. https://doi.org/10.3389/fmicb.2018.01206 Theriot, C. M. (2018). Beyond Structure: Defining the Function of the Gut Using Omic Approaches for Rational Design of Personalized Therapeutics. MSYSTEMS, 3(2). https://doi.org/10.1128/msystems.00173-17 Ferguson, K. M., Jacob, M. E., Theriot, C. M., Callahan, B. J., Prange, T., Papich, M. G., & Foster, D. M. (2018). Dosing Regimen of Enrofloxacin Impacts Intestinal Pharmacokinetics and the Fecal Microbiota in Steers. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02190 Ma, C., Han, M. J., Heinrich, B., Fu, Q., Zhang, Q. F., Sandhu, M., … Ruchirawat, M. (2018). MICROBIOME Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 360(6391), 876-. Seekatz, A. M., Theriot, C. M., Rao, K., Chang, Y.-M., Freeman, A. E., Kao, J. Y., & Young, V. B. (2018, October). Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. ANAEROBE, Vol. 53, pp. 64–73. https://doi.org/10.1016/j.anaerobe.2018.04.001 Fletcher, J. R., Erwin, S., Lanzas, C., & Theriot, C. M. (2018). Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. MSPHERE, 3(2). https://doi.org/10.1128/msphere.00089-18 O'Flaherty, S., Crawley, A. B., Theriot, C. M., & Barrangou, R. (2018). The Lactobacillus Bile Salt Hydrolase Repertoire Reveals Niche-Specific Adaptation. MSPHERE, 3(3). https://doi.org/10.1128/msphere.00140-18 Thanissery, R., Winston, J. A., & Theriot, C. M. (2017, June). Inhibition of spore germination, growth, and toxin activity of clinically relevant C-difficile strains by gut microbiota derived secondary bile acids. ANAEROBE, Vol. 45, pp. 86–100. https://doi.org/10.1016/j.anaerobe.2017.03.004 Cox, L. M., Theriot, C. M., & Fichorova, R. N. (2017, June). Introduction to the special issue highlighting Anaerobe 2016. ANAEROBE, Vol. 45, pp. 1–2. https://doi.org/10.1016/j.anaerobe.2017.05.002 Fleming-Davies, A., Jabbari, S., Robertson, S. L., Asih, T. S. N., Lanzas, C., Lenhart, S., & Theriot, C. M. (2017). Mathematical Modeling of the Effects of Nutrient Competition and Bile Acid Metabolism by the Gut Microbiota on Colonization Resistance Against Clostridium difficile. In Association for Women in Mathematics Series (pp. 137–161). https://doi.org/10.1007/978-3-319-60304-9_8 Theriot, C. M., Bowman, A. A., & Young, V. B. (2016). Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. MSphere, 1(1). https://doi.org/10.1128/msphere.00045-15 Winston, J. A., Thanissery, R., Montgomery, S. A., & Theriot, C. M. (2016). Cefoperazone-treated Mouse Model of Clinically-relevant Clostridium difficile Strain R20291. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (118). https://doi.org/10.3791/54850 Winston, J. A., & Theriot, C. M. (2016). Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. ANAEROBE, 41, 44–50. https://doi.org/10.1016/j.anaerobe.2016.05.003 Noecker, C., Eng, A., Srinivasan, S., Theriot, C. M., Young, V. B., Jansson, J. K., … Borenstein, E. (2016). Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. MSystems, 1(1). https://doi.org/10.1128/msystems.00013-15 Seekatz, A. M., Theriot, C. M., Molloy, C. T., Wozniak, K. L., Bergin, I. L., & Young, V. B. (2015). Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease. Infection and Immunity, 83(10), 3838–3846. https://doi.org/10.1128/iai.00459-15 Theriot, C. M., & Young, V. B. (2015). Interactions Between the Gastrointestinal Microbiome and Clostridium difficile. Annual Review of Microbiology, 69(1), 445–461. https://doi.org/10.1146/annurev-micro-091014-104115 Sadighi Akha, A. A., McDermott, A. J., Theriot, C. M., Carlson, P. E., Jr, Frank, C. R., McDonald, R. A., … Huffnagle, G. B. (2015). Interleukin-22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice. Immunology, 144(4), 587–597. https://doi.org/10.1111/imm.12414 Bassis, C. M., Theriot, C. M., & Young, V. B. (2014). Alteration of the Murine Gastrointestinal Microbiota by Tigecycline Leads to Increased Susceptibility to Clostridium difficile Infection. Antimicrobial Agents and Chemotherapy, 58(5), 2767–2774. https://doi.org/10.1128/AAC.02262-13 Theriot, C., & Young, V. B. (2014). Antibiotic-Associated Diarrhea. In Encyclopedia of Metagenomics (pp. 1–7). https://doi.org/10.1007/978-1-4614-6418-1_64-3 Theriot, C. M., Koenigsknecht, M. J., Carlson, P. E., Hatton, G. E., Nelson, A. M., Li, B., … Young, V. B. (2014). Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4114 Trindade, B. C., Theriot, C. M., Leslie, J. L., Carlson, P. E., Jr., Bergin, I. L., Peters-Golden, M., … Aronoff, D. M. (2014). Clostridium difficile-induced colitis in mice is independent of leukotrienes. Anaerobe, 30, 90–98. https://doi.org/10.1016/j.anaerobe.2014.09.006 Koenigsknecht, M. J., Theriot, C. M., Bergin, I. L., Schumacher, C. A., Schloss, P. D., & Young, V. B. (2014). Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract. Infection and Immunity, 83(3), 934–941. https://doi.org/10.1128/IAI.02768-14 Theriot, C. M., Schumacher, C. A., Bassis, C. M., Seekatz, A. M., & Young, V. B. (2014). Effects of Tigecycline and Vancomycin Administration on Established Clostridium difficile Infection. Antimicrobial Agents and Chemotherapy, 59(3), 1596–1604. https://doi.org/10.1128/aac.04296-14 Sadighi Akha, A. A., Theriot, C. M., Erb-Downward, J. R., McDermott, A. J., Falkowski, N. R., Tyra, H. M., … Huffnagle, G. B. (2013). Acute infection of mice with Clostridium difficile leads to eIF2α phosphorylation and pro-survival signalling as part of the mucosal inflammatory response. Immunology, 140(1), 111–122. https://doi.org/10.1111/imm.12122 Theriot, C. M., & Young, V. B. (2013). Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Gut Microbes, 5(1), 86–95. https://doi.org/10.4161/gmic.27131 Taveirne, M. E., Theriot, C. M., Livny, J., & DiRita, V. J. (2013). The Complete Campylobacter jejuni Transcriptome during Colonization of a Natural Host Determined by RNAseq. PLoS ONE, 8(8), e73586. https://doi.org/10.1371/journal.pone.0073586 Theriot, C. M., Koumpouras, C. C., Carlson, P. E., Bergin, I. I., Aronoff, D. M., & Young, V. B. (2011). Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes, 2(6), 326–334. https://doi.org/10.4161/gmic.19142 Theriot, C. M., Semcer, R. L., Shah, S. S., & Grunden, A. M. (2011). Improving the Catalytic Activity of Hyperthermophilic Pyrococcus horikoshii Prolidase for Detoxification of Organophosphorus Nerve Agents over a Broad Range of Temperatures. Archaea, 2011, 1–9. https://doi.org/10.1155/2011/565127 Reeves, A. E., Theriot, C. M., Bergin, I. L., Huffnagle, G. B., Schloss, P. D., & Young, V. B. (2011). The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes, 2(3), 145–158. https://doi.org/10.4161/gmic.2.3.16333 Theriot, C. M., & Grunden, A. M. (2010). Hydrolysis of organophosphorus compounds by microbial enzymes. Applied Microbiology and Biotechnology, 89(1), 35–43. https://doi.org/10.1007/s00253-010-2807-9 Theriot, C. M., Du, X., Tove, S. R., & Grunden, A. M. (2010). Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures. Applied Microbiology and Biotechnology, 87(5), 1715–1726. https://doi.org/10.1007/s00253-010-2614-3 Theriot, C. M., Tove, S. R., & Grunden, A. M. (2009). Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Applied Microbiology and Biotechnology, 86(1), 177–188. https://doi.org/10.1007/s00253-009-2235-x Theriot, C. M., Tove, S. R., & Grunden, A. M. (2009). Erratum to: Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Applied Microbiology and Biotechnology, 86(1), 393–393. https://doi.org/10.1007/S00253-009-2300-5 Theriot, C. M., Tove, S. R., & Grunden, A. M. (2009). [Review of biotechnological applications of recombinant microbial prolidases]. Advances in applied microbiology, vol 68, 68, 99-.