@article{korobkina_berkutov_golub_huffman_hickman_leung_medlin_morano_rao_teander_et al._2022, title={Growing solid deuterium for UCN production}, volume={24}, ISSN={["1477-2655"]}, DOI={10.3233/JNR-220010}, abstractNote={We have experimentally studied growing a large (about 1 liter) ortho-deuterium crystal in a real UCN source cryostat and recorded the growing process optically using a camera. The best quality was observed when growing the crystal directly from a vapor phase. The crystal was grown at different mass flows of deuterium and annealed at different temperatures. Optimum conditions were found for both, obtaining an optically transparent crystal and cooling it down with minimal damage. We found that the quality, final shape and changes during annealing of the crystal are very much dependent on the temperature profile of the cryostat walls.}, number={2}, journal={JOURNAL OF NEUTRON RESEARCH}, author={Korobkina, Ekaterina and Berkutov, Igor and Golub, Robert and Huffman, Paul and Hickman, Clark and Leung, Kent and Medlin, Graham and Morano, Matthew J. and Rao, Thomas and Teander, Cole and et al.}, year={2022}, pages={179–191} } @article{ahmed_alarcon_aleksandrova_baeßler_barron-palos_bartoszek_beck_behzadipour_berkutov_bessuille_et al._2019, title={A new cryogenic apparatus to search for the neutron electric dipole moment}, volume={14}, ISSN={1748-0221}, url={http://dx.doi.org/10.1088/1748-0221/14/11/P11017}, DOI={10.1088/1748-0221/14/11/P11017}, abstractNote={A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). This apparatus uses superfluid 4He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized 3He from an Atomic Beam Source injected into the superfluid 4He and transported to the measurement cells where it serves as a co-magnetometer. The superfluid 4He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of 2−3× 10−28 e-cm, with anticipated systematic uncertainties below this level.}, number={11}, journal={Journal of Instrumentation}, publisher={IOP Publishing}, author={Ahmed, M.W. and Alarcon, R. and Aleksandrova, A. and Baeßler, S. and Barron-Palos, L. and Bartoszek, L.M. and Beck, D.H. and Behzadipour, M. and Berkutov, I. and Bessuille, J. and et al.}, year={2019}, month={Nov}, pages={P11017–P11017} } @article{countryman_fan_gorthi_pan_strickland_kaur_wang_lin_lei_white_et al._2018, title={Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates}, volume={293}, ISSN={["1083-351X"]}, DOI={10.1074/jbc.m117.806406}, abstractNote={Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination–mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.}, number={3}, journal={JOURNAL OF BIOLOGICAL CHEMISTRY}, author={Countryman, Preston and Fan, Yanlin and Gorthi, Aparna and Pan, Hai and Strickland, Jack and Kaur, Parminder and Wang, Xuechun and Lin, Jiangguo and Lei, Xiaoying and White, Christian and et al.}, year={2018}, month={Jan}, pages={1054–1069} } @article{anghel_bailey_bison_blau_broussard_clayton_cude-woods_daum_hawari_hild_et al._2018, title={Solid deuterium surface degradation at ultracold neutron sources}, volume={54}, ISSN={1434-6001 1434-601X}, url={http://dx.doi.org/10.1140/epja/i2018-12594-2}, DOI={10.1140/epja/i2018-12594-2}, abstractNote={Solid deuterium (sD_2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD_2 material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment (`conditioning') of the sD_2. We show that, in addition to the quality of the bulk sD_2, the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D_2 frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD_2 frost formation on initially transparent sD_2 in offline studies with pulsed heat input at the North Carolina State University UCN source results in a consistent description of the UCN yield decrease.}, number={9}, journal={The European Physical Journal A}, publisher={Springer Nature}, author={Anghel, A. and Bailey, T. L. and Bison, G. and Blau, B. and Broussard, L. J. and Clayton, S. M. and Cude-Woods, C. and Daum, M. and Hawari, A. and Hild, N. and et al.}, year={2018}, month={Sep} }