@article{stein_khachariya_mecouch_mita_reddy_tweedie_sierakowski_kamler_bockowski_kohn_et al._2023, title={Analysis of Vertical GaN JBS and p-n Diodes by Mg Ion Implantation and Ultrahigh-Pressure Annealing}, volume={12}, ISSN={["1557-9646"]}, url={https://doi.org/10.1109/TED.2023.3339592}, DOI={10.1109/TED.2023.3339592}, abstractNote={We report on vertical GaN junction barrier Schottky (JBS) diodes formed by Mg ion implantation and ultrahigh -pressure annealing (UHPA). The static ON-state characteristics of the diodes show an ideality factor of 1.05, a turn-on voltage of ~0.7 V, a current rectification ratio of $\sim 10^{11}$ , and a low differential specific ON-resistance that scales with Schottky stripe width in fair agreement with the analytical model. The reverse leakage dependence on Schottky stripe width also agrees well with the analytical model. Implanted p-n junction diodes fabricated on the same wafer exhibit avalanche breakdown in reverse bias with a positive temperature coefficient, but the forward current is limited by a series barrier. Temperature-dependent current–voltage measurements of th p-n diodes verify the presence of the implanted p-n junction and reveal an additional 0.43-eV barrier, which we hypothesize arises from a p-Schottky contact and forms a second diode back-to-back with the p-n junction. This interpretation is supported by analysis of the capacitance–voltage characteristics of the implanted p-n diodes, epitaxial p-n diodes fabricated with intentional p-Schottky contacts, and comparison to TCAD simulations. Ultimately, the presence of the p-Schottky contact does not hinder JBS diode operation. The use of diffusion-aware designs and/or diffusion reduction represents future directions for Mg implantation technology in GaN power devices.}, journal={IEEE TRANSACTIONS ON ELECTRON DEVICES}, author={Stein, Shane R. and Khachariya, Dolar and Mecouch, Will and Mita, Seiji and Reddy, Pramod and Tweedie, James and Sierakowski, Kacper and Kamler, Grzegorz and Bockowski, Michal and Kohn, Erhard and et al.}, year={2023}, month={Dec} } @article{rathkanthiwar_reddy_quinones_loveless_kamiyama_bagheri_khachariya_eldred_moody_mita_et al._2023, title={Anderson transition in compositionally graded p-AlGaN}, volume={134}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/5.0176419}, DOI={10.1063/5.0176419}, abstractNote={Mg-doped, graded AlGaN films showed the formation of an impurity band and high, temperature-invariant p-conductivity even for doping levels well below the Mott transition. However, compensating point defects disrupted the impurity band, resulting in an Anderson transition from the impurity band to valence band conduction and a more than tenfold reduction in room-temperature conductivity. This is the first demonstration of Anderson-like localization in AlGaN films.}, number={19}, journal={JOURNAL OF APPLIED PHYSICS}, author={Rathkanthiwar, Shashwat and Reddy, Pramod and Quinones, Cristyan E. and Loveless, James and Kamiyama, Masahiro and Bagheri, Pegah and Khachariya, Dolar and Eldred, Tim and Moody, Baxter and Mita, Seiji and et al.}, year={2023}, month={Nov} } @article{sengupta_vaidya_szymanski_khachariya_bockowski_kamler_reddy_sitar_collazo_pavlidis_2023, title={Chemical Vapor Deposition of Monolayer MoS2 on Chemomechanically Polished N-Polar GaN for Future 2D/3D Heterojunction Optoelectronics}, volume={3}, ISSN={["2574-0970"]}, url={https://doi.org/10.1021/acsanm.3c00038}, DOI={10.1021/acsanm.3c00038}, abstractNote={The growth of monolayer MoS2 crystals on chemomechanically polished (CMP) N-polar GaN using PTAS-assisted chemical vapor deposition is demonstrated. The formation of monolayer MoS2 was initially prevented by the as-grown GaN’s large surface roughness. CMP reduces the roughness to 250 pm, enabling monolayer MoS2 triangles with edge lengths of 30 μm, a Raman peak separation of <20 cm–1, and an optical bandgap of 1.81 eV, which is on par with those obtained on smooth Ga-polar GaN. It is thus demonstrated that high-quality MoS2 monolayers can be obtained on N-polar GaN for future high-speed optoelectronic and quantum sensing applications.}, journal={ACS APPLIED NANO MATERIALS}, author={Sengupta, Rohan and Vaidya, Shipra and Szymanski, Dennis and Khachariya, Dolar and Bockowski, Michal and Kamler, Grzegorz and Reddy, Pramod and Sitar, Zlatko and Collazo, Ramon and Pavlidis, Spyridon}, year={2023}, month={Mar} } @article{quinones_khachariya_bagheri_reddy_mita_kirste_rathkanthiwar_tweedie_pavlidis_kohn_et al._2023, title={Demonstration of near-ideal Schottky contacts to Si-doped AlN}, volume={123}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0174524}, DOI={10.1063/5.0174524}, abstractNote={Near-ideal behavior in Schottky contacts to Si-doped AlN was observed as evidenced by a low ideality factor of 1.5 at room temperature. A temperature-independent Schottky barrier height of 1.9 eV was extracted from temperature-dependent I–V measurements. An activation energy of ∼300 meV was observed in the series resistance, which corresponded to the ionization energy of the deep Si donor state. Both Ohmic and Schottky contacts were stable up to 650 °C, with around four orders of magnitude rectification at this elevated temperature. These results demonstrate the potential of AlN as a platform for power devices capable of operating in extreme environments.}, number={17}, journal={APPLIED PHYSICS LETTERS}, author={Quinones, C. E. and Khachariya, D. and Bagheri, P. and Reddy, P. and Mita, S. and Kirste, R. and Rathkanthiwar, S. and Tweedie, J. and Pavlidis, S. and Kohn, E. and et al.}, year={2023}, month={Oct} } @article{bagheri_quinones-garcia_khachariya_loveless_guan_rathkanthiwar_reddy_kirste_mita_tweedie_et al._2023, title={High conductivity in Ge-doped AlN achieved by a non-equilibrium process}, volume={122}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0146439}, DOI={10.1063/5.0146439}, abstractNote={Highly conductive Ge-doped AlN with conductivity of 0.3 (Ω cm)−1 and electron concentration of 2 × 1018 cm−3 was realized via a non-equilibrium process comprising ion implantation and annealing at a moderate thermal budget. Similar to a previously demonstrated shallow donor state in Si-implanted AlN, Ge implantation also showed a shallow donor behavior in AlN with an ionization energy ∼80 meV. Ge showed a 3× higher conductivity than its Si counterpart for a similar doping level. Photoluminescence spectroscopy indicated that higher conductivity for Ge-doped AlN was achieved primarily due to lower compensation. This is the highest n-type conductivity reported for AlN doped with Ge to date and demonstration of technologically useful conductivity in Ge-doped AlN.}, number={14}, journal={APPLIED PHYSICS LETTERS}, author={Bagheri, Pegah and Quinones-Garcia, Cristyan and Khachariya, Dolar and Loveless, James and Guan, Yan and Rathkanthiwar, Shashwat and Reddy, Pramod and Kirste, Ronny and Mita, Seiji and Tweedie, James and et al.}, year={2023}, month={Apr} } @article{rathkanthiwar_reddy_moody_quinones-garcia_bagheri_khachariya_dalmau_mita_kirste_collazo_et al._2023, title={High p-conductivity in AlGaN enabled by polarization field engineering}, volume={122}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0143427}, DOI={10.1063/5.0143427}, abstractNote={High p-conductivity (0.7 Ω−1 cm−1) was achieved in high-Al content AlGaN via Mg doping and compositional grading. A clear transition between the valence band and impurity band conduction mechanisms was observed. The transition temperature depended strongly on the compositional gradient and to some degree on the Mg doping level. A model is proposed to explain the role of the polarization field in enhancing the conductivity in Mg-doped graded AlGaN films and the transition between the two conduction types. This study offers a viable path to technologically useful p-conductivity in AlGaN.}, number={15}, journal={APPLIED PHYSICS LETTERS}, author={Rathkanthiwar, Shashwat and Reddy, Pramod and Moody, Baxter and Quinones-Garcia, Cristyan and Bagheri, Pegah and Khachariya, Dolar and Dalmau, Rafael and Mita, Seiji and Kirste, Ronny and Collazo, Ramon and et al.}, year={2023}, month={Apr} } @article{stein_khachariya_mita_breckenridge_tweedie_reddy_sierakowski_kamler_bockowski_kohn_et al._2023, title={Schottky contacts on ultra-high-pressure-annealed GaN with high rectification ratio and near-unity ideality factor}, volume={16}, ISSN={["1882-0786"]}, DOI={10.35848/1882-0786/acc443}, abstractNote={Abstract}, number={3}, journal={APPLIED PHYSICS EXPRESS}, author={Stein, Shane R. and Khachariya, Dolar and Mita, Seiji and Breckenridge, M. Hayden and Tweedie, James and Reddy, Pramod and Sierakowski, Kacper and Kamler, Grzegorz and Bockowski, Michal and Kohn, Erhard and et al.}, year={2023}, month={Mar} } @article{stein_khachariya_pavlidis_2022, title={Design and performance analysis of GaN vertical JFETs with ion-implanted gates}, volume={37}, ISSN={["1361-6641"]}, DOI={10.1088/1361-6641/ac9d00}, abstractNote={Abstract}, number={12}, journal={SEMICONDUCTOR SCIENCE AND TECHNOLOGY}, author={Stein, Shane R. and Khachariya, Dolar and Pavlidis, Spyridon}, year={2022}, month={Dec} } @article{bagheri_klump_washiyama_breckenridge_kim_guan_khachariya_quinones-garcia_sarkar_rathkanthiwar_et al._2022, title={Doping and compensation in heavily Mg doped Al-rich AlGaN films}, volume={120}, ISSN={["1077-3118"]}, DOI={10.1063/5.0082992}, abstractNote={Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3 were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019 cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.}, number={8}, journal={APPLIED PHYSICS LETTERS}, author={Bagheri, Pegah and Klump, Andrew and Washiyama, Shun and Breckenridge, M. Hayden and Kim, Ji Hyun and Guan, Yan and Khachariya, Dolar and Quinones-Garcia, Cristyan and Sarkar, Biplab and Rathkanthiwar, Shashwat and et al.}, year={2022}, month={Feb} } @article{szymanski_khachariya_eldred_bagheri_washiyama_chang_pavlidis_kirste_reddy_kohn_et al._2022, title={GaN lateral polar junction arrays with 3D control of doping by supersaturation modulated growth: A path toward III-nitride superjunctions}, volume={131}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/5.0076044}, DOI={10.1063/5.0076044}, abstractNote={We demonstrate a pathway employing crystal polarity controlled asymmetric impurity incorporation in the wide bandgap nitride material system to enable 3D doping control during the crystal growth process. The pathway involves polarity specific supersaturation modulated growth of lateral polar structures of alternating Ga- and N-polar GaN domains. A STEM technique of integrated differential phase contrast is used to image the atomic structure of the different polar domains and their single atomic plane boundaries. As a demonstration, 1 μm wide alternating Ga- and N-polar GaN domains exhibiting charge balanced and periodic domains for superjunction technology were grown. The challenges in characterizing the resulting 3D doping profile were addressed with atom probe tomography with atomic scale compositional resolution corroborating capacitance measurements and secondary-ion mass spectroscopy analysis.}, number={1}, journal={JOURNAL OF APPLIED PHYSICS}, author={Szymanski, Dennis and Khachariya, Dolar and Eldred, Tim B. and Bagheri, Pegah and Washiyama, Shun and Chang, Alexander and Pavlidis, Spyridon and Kirste, Ronny and Reddy, Pramod and Kohn, Erhard and et al.}, year={2022}, month={Jan} } @article{bagheri_quinones-garcia_khachariya_rathkanthiwar_reddy_kirste_mita_tweedie_collazo_sitar_2022, title={High electron mobility in AlN:Si by point and extended defect management}, volume={132}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/5.0124589}, DOI={10.1063/5.0124589}, abstractNote={High room temperature n-type mobility, exceeding 300 cm2/Vs, was demonstrated in Si-doped AlN. Dislocations and CN−1 were identified as the main compensators for AlN grown on sapphire and AlN single crystalline substrates, respectively, limiting the lower doping limit and mobility. Once the dislocation density was reduced by the growth on AlN wafers, C-related compensation could be reduced by controlling the process supersaturation and Fermi level during growth. While the growth on sapphire substrates supported only high doping ([Si] > 5 × 1018 cm−3) and low mobility (∼20 cm2/Vs), growth on AlN with proper compensation management enabled controlled doping at two orders of magnitude lower dopant concentrations. This work is of crucial technological importance because it enables the growth of drift layers for AlN-based power devices.}, number={18}, journal={JOURNAL OF APPLIED PHYSICS}, author={Bagheri, Pegah and Quinones-Garcia, Cristyan and Khachariya, Dolar and Rathkanthiwar, Shashwat and Reddy, Pramod and Kirste, Ronny and Mita, Seiji and Tweedie, James and Collazo, Ramon and Sitar, Zlatko}, year={2022}, month={Nov} } @article{reddy_mecouch_breckenridge_khachariya_bagheri_kim_guan_mita_moody_tweedie_et al._2022, title={Large-Area, Solar-Blind, Sub-250 nm Detection AlGaN Avalanche Photodiodes Grown on AlN Substrates}, volume={3}, ISSN={["1862-6270"]}, url={https://doi.org/10.1002/pssr.202100619}, DOI={10.1002/pssr.202100619}, abstractNote={Herein, Al‐rich AlGaN‐based avalanche photodiodes (APDs) grown on single crystal AlN substrates high ultraviolet‐C sensitivity for λ < 200 nm are fabricated, while exhibiting blindness to λ > 250 nm. A maximum quantum efficiency of 68% and peak gain of 320 000 are estimated resulting in a figure of merit of ≈220 000 in devices with ϕ = 100 μm. As expected, a decrease in gain with increase in device size is observed and a gain of ≈20 000 is estimated in devices with ϕ = 400 μm. Overall, two orders of magnitude higher performance are observed in APDs on single crystal AlN substrates compared to those on sapphire.}, journal={PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS}, publisher={Wiley}, author={Reddy, Pramod and Mecouch, Will and Breckenridge, M. Hayden and Khachariya, Dolar and Bagheri, Pegah and Kim, Ji Hyun and Guan, Yan and Mita, Seiji and Moody, Baxter and Tweedie, James and et al.}, year={2022}, month={Mar} } @article{rathkanthiwar_szymanski_khachariya_bagheri_kim_mita_reddy_kohn_pavlidis_kirste_et al._2022, title={Low resistivity, p-type, N-Polar GaN achieved by chemical potential control}, volume={15}, ISSN={["1882-0786"]}, DOI={10.35848/1882-0786/ac8273}, abstractNote={Abstract}, number={8}, journal={APPLIED PHYSICS EXPRESS}, author={Rathkanthiwar, Shashwat and Szymanski, Dennis and Khachariya, Dolar and Bagheri, Pegah and Kim, Ji Hyun and Mita, Seiji and Reddy, Pramod and Kohn, Erhard and Pavlidis, Spyridon and Kirste, Ronny and et al.}, year={2022}, month={Aug} } @article{jadhav_bagheri_klump_khachariya_mita_reddy_rathkanthiwar_kirste_collazo_sitar_et al._2022, title={On electrical analysis of Al-rich p-AlGaN films for III-nitride UV light emitters}, volume={37}, ISSN={["1361-6641"]}, url={https://doi.org/10.1088/1361-6641/ac3710}, DOI={10.1088/1361-6641/ac3710}, abstractNote={Abstract}, number={1}, journal={SEMICONDUCTOR SCIENCE AND TECHNOLOGY}, publisher={IOP Publishing}, author={Jadhav, Aakash and Bagheri, Pegah and Klump, Andrew and Khachariya, Dolar and Mita, Seiji and Reddy, Pramod and Rathkanthiwar, Shashwat and Kirste, Ronny and Collazo, Ramon and Sitar, Zlatko and et al.}, year={2022}, month={Jan} } @article{rathkanthiwar_bagheri_khachariya_mita_pavlidis_reddy_kirste_tweedie_sitar_collazo_2022, title={Point-defect management in homoepitaxially grown Si-doped GaN by MOCVD for vertical power devices}, volume={15}, ISSN={["1882-0786"]}, DOI={10.35848/1882-0786/ac6566}, abstractNote={Abstract}, number={5}, journal={APPLIED PHYSICS EXPRESS}, author={Rathkanthiwar, Shashwat and Bagheri, Pegah and Khachariya, Dolar and Mita, Seiji and Pavlidis, Spyridon and Reddy, Pramod and Kirste, Ronny and Tweedie, James and Sitar, Zlatko and Collazo, Ramon}, year={2022}, month={May} } @article{khachariya_mita_reddy_dangi_dycus_bagheri_breckenridge_sengupta_rathkanthiwar_kirste_et al._2022, title={Record >10 MV/cm mesa breakdown fields in Al0.85Ga0.15N/Al0.6Ga0.4N high electron mobility transistors on native AlN substrates}, volume={120}, ISSN={["1077-3118"]}, DOI={10.1063/5.0083966}, abstractNote={The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al0.85Ga0.15N/Al0.6Ga0.4N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3 μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al0.6Ga0.4N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9 μm are 850 and 1500 V, respectively.}, number={17}, journal={APPLIED PHYSICS LETTERS}, author={Khachariya, Dolar and Mita, Seiji and Reddy, Pramod and Dangi, Saroj and Dycus, J. Houston and Bagheri, Pegah and Breckenridge, M. Hayden and Sengupta, Rohan and Rathkanthiwar, Shashwat and Kirste, Ronny and et al.}, year={2022}, month={Apr} } @article{khachariya_stein_mecouch_breckenridge_rathkanthiwar_mita_moody_reddy_tweedie_kirste_et al._2022, title={Vertical GaN junction barrier Schottky diodes with near-ideal performance using Mg implantation activated by ultra-high-pressure annealing}, volume={15}, ISSN={["1882-0786"]}, DOI={10.35848/1882-0786/ac8f81}, abstractNote={Abstract}, number={10}, journal={APPLIED PHYSICS EXPRESS}, author={Khachariya, Dolar and Stein, Shane and Mecouch, Will and Breckenridge, M. Hayden and Rathkanthiwar, Shashwat and Mita, Seiji and Moody, Baxter and Reddy, Pramod and Tweedie, James and Kirste, Ronny and et al.}, year={2022}, month={Oct} } @article{breckenridge_bagheri_guo_sarkar_khachariya_pavlidis_tweedie_kirste_mita_reddy_et al._2021, title={High n-type conductivity and carrier concentration in Si-implanted homoepitaxial AlN}, volume={118}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0042857}, DOI={10.1063/5.0042857}, abstractNote={We demonstrate Si-implanted AlN with high conductivity (>1 Ω−1 cm−1) and high carrier concentration (5 × 1018 cm−3). This was enabled by Si implantation into AlN with a low threading dislocation density (TDD) (<103 cm−2), a non-equilibrium damage recovery and dopant activation annealing process, and in situ suppression of self-compensation during the annealing. Low TDD and active suppression of VAl-nSiAl complexes via defect quasi Fermi level control enabled low compensation, while low-temperature, non-equilibrium annealing maintained the desired shallow donor state with an ionization energy of ∼70 meV. The realized n-type conductivity and carrier concentration are over one order of magnitude higher than that reported thus far and present a major technological breakthrough in doping of AlN.}, number={11}, journal={APPLIED PHYSICS LETTERS}, author={Breckenridge, M. Hayden and Bagheri, Pegah and Guo, Qiang and Sarkar, Biplab and Khachariya, Dolar and Pavlidis, Spyridon and Tweedie, James and Kirste, Ronny and Mita, Seiji and Reddy, Pramod and et al.}, year={2021}, month={Mar} } @article{bagheri_reddy_mita_szymanski_kim_guan_khachariya_klump_pavlidis_kirste_et al._2021, title={On the Ge shallow-to-deep level transition in Al-rich AlGaN}, volume={130}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/5.0059037}, DOI={10.1063/5.0059037}, abstractNote={Contrary to the arsenides where donors undergo stable DX transition, we find that Ge in AlGaN does not suffer from the DX transition; instead, it undergoes a shallow donor (30 meV) to deep donor (150 meV) transition at ∼50% Al content in the alloy. This finding is of profound technological importance as it removes fundamental doping limitations in AlGaN and AlN imposed by the presumed DX−1 acceptor state. The charge state of Ge below and above the transition was determined by co-doping with Si, which remains a shallow donor in AlGaN for up to 80% Al. It was found that Ge occupied a donor state with a (0/+) thermodynamic transition for AlGaN alloys below and above the transition. Ge as a shallow donor was completely ionized at room temperature; however, the ionization of the deep donor required elevated temperatures, commensurate with its higher ionization energy. This behavior is not unique to Ge; preliminary findings show that Si and O in AlGaN may behave similarly.}, number={5}, journal={JOURNAL OF APPLIED PHYSICS}, author={Bagheri, Pegah and Reddy, Pramod and Mita, Seiji and Szymanski, Dennis and Kim, Ji Hyun and Guan, Yan and Khachariya, Dolar and Klump, Andrew and Pavlidis, Spyridon and Kirste, Ronny and et al.}, year={2021}, month={Aug} } @article{khachariya_szymanski_breckenridge_reddy_kohn_sitar_collazo_pavlidis_2021, title={On the characteristics of N-polar GaN Schottky barrier contacts with LPCVD SiN interlayers}, volume={118}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0039888}, DOI={10.1063/5.0039888}, abstractNote={We study the behavior of N-polar GaN Schottky diodes with low-pressure chemical vapor deposited (LPCVD) SiN interlayers and unveil the important role of an amphoteric miniband formed in this interlayer due to a previously identified and dominating Si dangling bond defect. Through analysis of temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V), and x-ray photoelectron spectroscopy measurements, we observe that when nickel is deposited on LPCVD SiN pretreated with hydrofluoric acid, the SiN/GaN interface is responsible for determining the overall system's barrier height. By contrast, contact formation on oxidized LPCVD SiN leads to a metal/SiN-dominant barrier. We, consequently, propose band diagrams that account for an amphoteric miniband in LPCVD SiN, leading to a new understanding of LPCVD SiN as a lossy dielectric with surface barrier-dependent behavior.}, number={12}, journal={APPLIED PHYSICS LETTERS}, author={Khachariya, Dolar and Szymanski, Dennis and Breckenridge, M. Hayden and Reddy, Pramod and Kohn, Erhard and Sitar, Zlatko and Collazo, Ramon and Pavlidis, Spyridon}, year={2021}, month={Mar} } @article{reddy_khachariya_mecouch_breckenridge_bagheri_guan_kim_pavlidis_kirste_mita_et al._2021, title={Study on avalanche breakdown and Poole-Frenkel emission in Al-rich AlGaN grown on single crystal AlN}, volume={119}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0062831}, DOI={10.1063/5.0062831}, abstractNote={We demonstrate that theoretical breakdown fields can be realized in practically dislocation free Al-rich AlGaN p-n junctions grown on AlN single crystal substrates. Furthermore, we also demonstrate a leakage current density in AlGaN that is independent of the device area, indicating a bulk leakage phenomenon and not surface or mesa-edge related. Accordingly, we identified the Poole–Frenkel emission from two types of point-defect traps in AlGaN as the primary source of reverse leakage before breakdown. Mg-doped AlGaN exhibited leakage currents due to a shallow trap at ∼0.16 eV in contrast with leakage currents observed in Si-doped AlGaN due to a deep trap at ∼1.8 eV.}, number={18}, journal={APPLIED PHYSICS LETTERS}, author={Reddy, Pramod and Khachariya, Dolar and Mecouch, Will and Breckenridge, M. Hayden and Bagheri, Pegah and Guan, Yan and Kim, Ji Hyun and Pavlidis, Spyridon and Kirste, Ronny and Mita, Seiji and et al.}, year={2021}, month={Nov} }