@article{garcia_cloghessy_cooney_shelley_chakraborty_kafle_busidan_sonawala_collier_jayaraman_et al._2023, title={The putative transporter MtUMAMIT14 participates in nodule formation in Medicago truncatula}, volume={13}, ISSN={["2045-2322"]}, DOI={10.1038/s41598-023-28160-8}, abstractNote={AbstractTransport systems are crucial in many plant processes, including plant–microbe interactions. Nodule formation and function in legumes involve the expression and regulation of multiple transport proteins, and many are still uncharacterized, particularly for nitrogen transport. Amino acids originating from the nitrogen-fixing process are an essential form of nitrogen for legumes. This work evaluates the role of MtN21 (henceforth MtUMAMIT14), a putative transport system from the MtN21/EamA-like/UMAMIT family, in nodule formation and nitrogen fixation in Medicago truncatula. To dissect this transporter’s role, we assessed the expression of MtUMAMIT14 using GUS staining, localized the corresponding protein in M. truncatula root and tobacco leaf cells, and investigated two independent MtUMAMIT14 mutant lines. Our results indicate that MtUMAMIT14 is localized in endosomal structures and is expressed in both the infection zone and interzone of nodules. Comparison of mutant and wild-type M. truncatula indicates MtUMAMIT14, the expression of which is dependent on the presence of NIN, DNF1, and DNF2, plays a role in nodule formation and nitrogen-fixation. While the function of the transporter is still unclear, our results connect root nodule nitrogen fixation in legumes with the UMAMIT family.}, number={1}, journal={SCIENTIFIC REPORTS}, publisher={Springer Science and Business Media LLC}, author={Garcia, Kevin and Cloghessy, Kaylee and Cooney, Danielle R. and Shelley, Brett and Chakraborty, Sanhita and Kafle, Arjun and Busidan, Aymeric and Sonawala, Unnati and Collier, Ray and Jayaraman, Dhileepkumar and et al.}, year={2023}, month={Jan} } @article{kafle_cooney_shah_garcia_2022, title={Mycorrhiza-mediated potassium transport in Medicago truncatula can be evaluated by using rubidium as a proxy}, volume={322}, ISSN={["1873-2259"]}, DOI={10.1016/j.plantsci.2022.111364}, abstractNote={Arbuscular mycorrhizal (AM) fungi considerably improve plant nutrient acquisition, particularly phosphorus and nitrogen. Despite the physiological importance of potassium (K+) in plants, there is increasing interest in the mycorrhizal contribution to plant K+ nutrition. Yet, methods to track K+ transport are often costly and limiting evaluation opportunities. Rubidium (Rb+) is known to be transported through same pathways as K+. As such our research efforts attempt to evaluate if Rb+ could serve as a viable proxy for evaluating K+ transport in AM symbiosis. Therefore, we examined the transport of K+ in Medicago truncatula colonized by the AM fungus Rhizophagus irregularis isolate 09 having access to various concentrations of Rb+ in custom-made two-compartment systems. Plant biomass, fungal root colonization, and shoot nutrient concentrations were recorded under sufficient and limited K+ regimes. We report that AM plants displayed higher shoot Rb+ and K+ concentrations and a greater K+:Na+ ratio relative to non-colonized plants in both sufficient and limited K+ conditions. Consequently, our results indicate that Rb+ can be used as a proxy to assess the movement of K+ in AM symbiosis, and suggest the existence of a mycorrhizal uptake pathway for K+ nutrition in M. truncatula.}, journal={PLANT SCIENCE}, author={Kafle, Arjun and Cooney, Danielle R. and Shah, Garud and Garcia, Kevin}, year={2022}, month={Sep} }