Dorith Rotenberg
Han, J., Klobasa, W., de Oliveira, L., Rotenberg, D., Whitfield, A. E., & Lorenzen, M. D. (2024). CRISPR/Cas9‐mediated genome editing of Frankliniella occidentalis, the western flower thrips, via embryonic microinjection. Insect Molecular Biology, 33(6), 589–600. https://doi.org/10.1111/imb.12913
Bailey, S. T., Kondragunta, A., Choi, H. A., Han, J., Mcinnes, H., Rotenberg, D., … Benoit, J. B. (2024). Dehydration and tomato spotted wilt virus infection combine to alter feeding and survival parameters for the western flower thrips, Frankliniella occidentalis. CURRENT RESEARCH IN INSECT SCIENCE, 6. https://doi.org/10.1016/j.cris.2024.100086
Shymanovich, T., Saville, A. C., Mohammad, N., Wei, Q., Rasmussen, D., Lahre, K. A., … Ristaino, J. B. (2024). Disease Progress and Detection of a California Resistance-Breaking Strain of Tomato Spotted Wilt Virus in Tomato with LAMP and CRISPR-Cas12a Assays. PhytoFrontiers™, 4(1), 50–60. https://doi.org/10.1094/PHYTOFR-05-23-0058-FI
Han, J., & Rotenberg, D. (2024, November 29). Microinjection-enabled gene silencing in first instar larvae of western flower thrips, Frankliniella occidentalis, reveals vital genes for larval survival. INSECT SCIENCE, Vol. 11. https://doi.org/10.1111/1744-7917.13478
Oliver, J. E., Rotenberg, D., Agosto-Shaw, K., McInnes, H. A., Lahre, K. A., Mulot, M., … Whitfield, A. E. (2024). Multigenic Hairpin Transgenes in Tomato Confer Resistance to Multiple Orthotospoviruses Including Sw-5 Resistance-Breaking Tomato Spotted Wilt Virus. Phytopathology®, 114(5), 1137–1149. https://doi.org/10.1094/PHYTO-07-23-0256-KC
Maurastoni, M., Han, J., Whitfield, A. E., & Rotenberg, D. (2023). A call to arms: novel strategies for thrips and tospovirus control. Current Opinion in Insect Science, 57, 101033. https://doi.org/10.1016/j.cois.2023.101033
Lee, G., Hossain, O., Jamalzadegan, S., Liu, Y., Wang, H., Saville, A. C., … Wei, Q. (2023). Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Science Advances, 9(15). https://doi.org/10.1126/sciadv.ade2232
Bailey, S. T., Kondragunta, A., Choi, H. A., Han, J., Rotenberg, D., Ullman, D. E., & Benoit, J. B. (2023, November 20). Dehydration yields distinct transcriptional shifts associated with glycogen metabolism and increases feeding in the western flower thrips, Frankliniella occidentalis. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Vol. 11. https://doi.org/10.1111/eea.13387
Lahre, K., Shekasteband, R., Meadows, I., Whitfield, A. E., & Rotenberg, D. (2023). First Report of Resistance-Breaking Variants of Tomato Spotted Wilt Virus (TSWV) Infecting Tomatoes with the Sw-5 Resistance Gene in North Carolina. Plant Disease, 107(7), 2271. https://doi.org/10.1094/PDIS-11-22-2637-PDN
Whitfield, A. E., & Rotenberg, D. (2023). Pests and resistance: The biology and control of supervectors and superpests. Current Opinion in Insect Science, 58, 101060. https://doi.org/10.1016/j.cois.2023.101060
Rajarapu, S. P., Ben-Mahmoud, S., Benoit, J. B., Ullman, D. E., Whitfield, A. E., & Rotenberg, D. (2022). Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. Insect Biochemistry and Molecular Biology, 149, 103843. https://doi.org/10.1016/j.ibmb.2022.103843
Alviar, K. B., Rotenberg, D., Martin, K. M., & Whitfield, A. E. (2022). The physical interactome between Peregrinus maidis proteins and the maize mosaic virus glycoprotein provides insights into the cellular biology of a rhabdovirus in the insect vector. Virology, 577, 163–173. https://doi.org/10.1016/j.virol.2022.10.002
Han, J., & Rotenberg, D. (2021). Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection. BMC GENOMICS, 22(1). https://doi.org/10.1186/s12864-021-08100-4
Klobasa, W., Chu, F.-C., Huot, O., Grubbs, N., Rotenberg, D., Whitfield, A. E., & Lorenzen, M. D. (2021). Microinjection of Corn Planthopper, Peregrinus maidis, Embryos for CRISPR/Cas9 Genome Editing. Journal of Visualized Experiments, 3(169). https://doi.org/10.3791/62417
Thomas, G. W. C., Dohmen, E., Hughes, D. S. T., Murali, S. C., Poelchau, M., Glastad, K., … Richards, S. (2020). Gene content evolution in the arthropods. GENOME BIOLOGY, 21(1). https://doi.org/10.1186/s13059-019-1925-7
Rotenberg, D., Baumann, A. A., Ben-Mahmoud, S., Christiaens, O., Dermauw, W., Ioannidis, P., … Richards, S. (2020). Genome-enabled insights into the biology of thrips as crop pests. BMC Biology, 18(1). https://doi.org/10.1186/s12915-020-00862-9
Rotenberg, D., Baumann, A. A., Ben-Mahmoud, S., Christiaens, O., Dermauw, W., Ioannidis, P., … Richards, S. (2020, November 16). Genome-enabled insights into the biology of thrips as crop pests (vol 18, 142, 2020). BMC BIOLOGY, Vol. 18. https://doi.org/10.1186/s12915-020-00915-z
Nachappa, P., Challacombe, J., Margolies, D. C., Nechols, J. R., Whitfield, A. E., & Rotenberg, D. (2020). Tomato Spotted Wilt Virus Benefits Its Thrips Vector by Modulating Metabolic and Plant Defense Pathways in Tomato. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.575564
Yao, J., Rotenberg, D., & Whitfield, A. E. (2019). Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. Journal of Virological Methods, 270, 153–162. https://doi.org/10.1016/j.jviromet.2019.05.010
Badillo-Vargas, I. E., Chen, Y., Martin, K. M., Rotenberg, D., & Whitfield, A. E. (2019). Discovery of Novel Thrips Vector Proteins That Bind to the Viral Attachment Protein of the Plant Bunyavirus Tomato Spotted Wilt Virus. Journal of Virology, 93(21), e00699–19. https://doi.org/10.1128/JVI.00699-19
Chen, Y., Dessau, M., Rotenberg, D., Rasmussen, D. A., & Whitfield, A. E. (2019). Entry of bunyaviruses into plants and vectors. https://doi.org/10.1016/bs.aivir.2019.07.001
Thomas, G. W. C., Dohmen, E., Hughes, D. S. T., Murali, S. C., Poelchau, M., Glastad, K., … Richards, S. (2018). Gene Content Evolution in the Arthropods. https://doi.org/10.1101/382945
Rotenberg, D., & Whitfield, A. E. (2018). Molecular interactions between tospoviruses and thrips vectors. Current Opinion in Virology, 33, 191–197. https://doi.org/10.1016/j.coviro.2018.11.007
Laney, A. G., Acosta-Leal, R., & Rotenberg, D. (2018). Optimized Yellow Dwarf Virus Multiplex PCR Assay Reveals a Common Occurrence of Barley yellow dwarf virus-PAS in Kansas Winter Wheat. PLANT HEALTH PROGRESS, 19(1), 37–43. https://doi.org/10.1094/PHP-09-17-0056-RS
Gamage, S. M. K. W., Rotenberg, D., Schneweis, D. J., Tsai, C.-W., & Dietzgen, R. G. (2018). Transcriptome-wide responses of adult melon thrips (Thrips palmi) associated with capsicum chlorosis virus infection. PLOS ONE, 13(12). https://doi.org/10.1371/journal.pone.0208538
Rotenberg, D., Martin, K., & Whitfield, A. (2017). Insight into molecular basis of plant-infecting arbovirus persistence in the vector: Conserved responses to viruses in insects. Retrieved from Virology Highlights Blog website: http://www.elsevierblogs.com/virology/insight-into-molecular-basis-of-plant-infecting-arbovirus-persistence-in-the-vector/
Schneweis, D. J., Whitfield, A. E., & Rotenberg, D. (2017). Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Virology, 500, 226–237. https://doi.org/10.1016/j.virol.2016.10.009
Shrestha, A., Champagne, D. E., Culbreath, A. K., Rotenberg, D., Whitfield, A. E., & Srinivasan, R. (2017). Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). Journal of General Virology, 98(8), 2156–2170. https://doi.org/10.1099/jgv.0.000874
Martin, K. M., Barandoc-Alviar, K., Schneweis, D. J., Stewart, C. L., Rotenberg, D., & Whitfield, A. E. (2017). Transcriptomic response of the insect vector, Peregrinus maidis, to Maize mosaic rhabdovirus and identification of conserved responses to propagative viruses in hopper vectors. Virology, 509, 71–81. https://doi.org/10.1016/j.virol.2017.05.019
Barandoc-Alviar, K., Ramirez, G. M., Rotenberg, D., & Whitfield, A. E. (2016). Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae). Journal of Insect Science, 16(1), 14. https://doi.org/10.1093/jisesa/iev154
Rotenberg, D., Bockus, W. W., Whitfield, A. E., Hervey, K., Baker, K. D., Ou, Z., … Appel, J. A. (2016). Occurrence of Viruses and Associated Grain Yields of Paired Symptomatic and Nonsymptomatic Tillers in Kansas Winter Wheat Fields. Phytopathology, 106(2), 202–210. https://doi.org/10.1094/phyto-04-15-0089-r
Montero-Astúa, M., Stafford-Banks, C., Badillo-Vargas, I., Rotenberg, D., Ullman, D. E., & Whitfield, A. E. (2016). Tospovirus-thrips biology. In J. K. Brown (Ed.), Vector-Mediated Transmission of Plant Pathogens (pp. 289–309). https://doi.org/10.1094/9780890545355.020
Whitfield, A. E., & Rotenberg, D. (2015). Disruption of insect transmission of plant viruses. Current Opinion in Insect Science, 8, 79–87. https://doi.org/10.1016/j.cois.2015.01.009
Whitfield, A. E., Falk, B. W., & Rotenberg, D. (2015). Insect vector-mediated transmission of plant viruses. Virology, 479-480, 278–289. https://doi.org/10.1016/j.virol.2015.03.026
Badillo-Vargas, I. E., Rotenberg, D., Schneweis, B. A., & Whitfield, A. E. (2015). RNA interference tools for the western flower thrips, Frankliniella occidentalis. Journal of Insect Physiology, 76, 36–46. https://doi.org/10.1016/j.jinsphys.2015.03.009
Rotenberg, D., Jacobson, A. L., Schneweis, D. J., & Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80–89. https://doi.org/10.1016/j.coviro.2015.08.003
Stafford-Banks, C. A., Rotenberg, D., Johnson, B. R., Whitfield, A. E., & Ullman, D. E. (2014). Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis. PLoS ONE, 9(4), e94447. https://doi.org/10.1371/journal.pone.0094447
Montero-Astúa, M., Rotenberg, D., Leach-Kieffaber, A., Schneweis, B. A., Park, S., Park, J. K., … Whitfield, A. E. (2014). Disruption of Vector Transmission by a Plant-Expressed Viral Glycoprotein. Molecular Plant-Microbe Interactions, 27(3), 296–304. https://doi.org/10.1094/mpmi-09-13-0287-fi
Whitfield, A. E., Rotenberg, D., & German, T. L. (2014). Plant pest destruction goes viral. Nature Biotechnology, 32(1), 65–66. https://doi.org/10.1038/nbt.2787
Yao, J., Rotenberg, D., Afsharifar, A., Barandoc-Alviar, K., & Whitfield, A. E. (2013). Development of RNAi Methods for Peregrinus maidis, the Corn Planthopper. PLoS ONE, 8(8), e70243. https://doi.org/10.1371/journal.pone.0070243
Nachappa, P., Margolies, D. C., Nechols, J. R., Whitfield, A. E., & Rotenberg, D. (2013). Tomato Spotted Wilt Virus Benefits a Non-Vector Arthropod, Tetranychus Urticae, by Modulating Different Plant Responses in Tomato. PLoS ONE, 8(9), e75909. https://doi.org/10.1371/journal.pone.0075909
Johnson, W. A., Nechols, J. R., Cloyd, R. A., Rotenberg, D., & Kennelly, M. M. (2012). Effect of Light Intensity on Brassica rapa Chemistry and Plutella xylostella (Lepidoptera: Plutellidae) Life History Traits. Journal of Entomological Science, 47(4), 327–349. https://doi.org/10.18474/0749-8004-47.4.327
Johnson, W. A., Cloyd, R. A., Nechols, J. R., Williams, K. A., Nelson, N. O., Rotenberg, D., & Kennelly, M. M. (2012). Effect of Nitrogen Source on Pac Choi (Brassica rapa L.) Chemistry and Interactions with the Diamondback Moth (Plutella xylostella L.). HortScience, 47(10), 1457–1465. https://doi.org/10.21273/hortsci.47.10.1457
Jacobson, A. L., Johnston, J. S., Rotenberg, D., Whitfield, A. E., Booth, W., Vargo, E. L., & Kennedy, G. G. (2012). Genome size and ploidy of Thysanoptera. Insect Molecular Biology, 22(1), 12–17. https://doi.org/10.1111/j.1365-2583.2012.01165.x
Badillo-Vargas, I. E., Rotenberg, D., Schneweis, D. J., Hiromasa, Y., Tomich, J. M., & Whitfield, A. E. (2012). Proteomic Analysis of Frankliniella occidentalis and Differentially Expressed Proteins in Response to Tomato Spotted Wilt Virus Infection. Journal of Virology, 86(16), 8793–8809. https://doi.org/10.1128/jvi.00285-12
Whitfield, A. E., Rotenberg, D., Aritua, V., & Hogenhout, S. A. (2011). Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. Insect Molecular Biology, 20(2), 225–242. https://doi.org/10.1111/j.1365-2583.2010.01060.x
Rotenberg, D., & Whitfield, A. E. (2010). Analysis of expressed sequence tags for Frankliniella occidentalis, the western flower thrips. Insect Molecular Biology, 19(4), 537–551. https://doi.org/10.1111/j.1365-2583.2010.01012.x
Rotenberg, D., Krishna Kumar, N. K., Ullman, D. E., Montero-Astúa, M., Willis, D. K., German, T. L., & Whitfield, A. E. (2009). Variation in Tomato spotted wilt virus Titer in Frankliniella occidentalis and Its Association with Frequency of Transmission. Phytopathology, 99(4), 404–410. https://doi.org/10.1094/phyto-99-4-0404
Whitfield, A. E., Kumar, N. K. K., Rotenberg, D., Ullman, D. E., Wyman, E. A., Zietlow, C., … German, T. L. (2008). A Soluble Form of the Tomato spotted wilt virus (TSWV) Glycoprotein GN (GN-S) Inhibits Transmission of TSWV by Frankliniella occidentalis. Phytopathology, 98(1), 45–50. https://doi.org/10.1094/phyto-98-1-0045
Rotenberg, D., Joshi, R., Benitez, M.-S., Chapin, L. G., Camp, A., Zumpetta, C., … Gardener, B. B. M. S. (2007). Farm Management Effects on Rhizosphere Colonization by Native Populations of 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp. and Their Contributions to Crop Health. Phytopathology, 97(6), 756–766. https://doi.org/10.1094/phyto-97-6-0756
Benítez, M.-S., Tustas, F. B., Rotenberg, D., Kleinhenz, M. D., Cardina, J., Stinner, D., … McSpadden Gardener, B. B. (2007). Multiple statistical approaches of community fingerprint data reveal bacterial populations associated with general disease suppression arising from the application of different organic field management strategies. Soil Biology and Biochemistry, 39(9), 2289–2301. https://doi.org/10.1016/j.soilbio.2007.03.028
Rotenberg, D., Wells, A. J., Chapman, E. J., Whitfield, A. E., Goodman, R. M., & Cooperband, L. R. (2007). Soil properties associated with organic matter-mediated suppression of bean root rot in field soil amended with fresh and composted paper mill residuals. Soil Biology and Biochemistry, 39(11), 2936–2948. https://doi.org/10.1016/j.soilbio.2007.06.011
Rotenberg, D., Thompson, T. S., German, T. L., & Willis, D. K. (2006). Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. Journal of Virological Methods, 138(1-2), 49–59. https://doi.org/10.1016/j.jviromet.2006.07.017
Rotenberg, D., Cooperband, L., & Stone, A. (2005). Dynamic relationships between soil properties and foliar disease as affected by annual additions of organic amendment to a sandy-soil vegetable production system. Soil Biology and Biochemistry, 37(7), 1343–1357. https://doi.org/10.1016/j.soilbio.2004.12.006
Newman, C. M., Rotenberg, D., & Cooperband, L. R. (2005). PAPER MILL RESIDUALS AND COMPOST EFFECTS ON PARTICULATE ORGANIC MATTER AND RELATED SOIL FUNCTIONS IN A SANDY SOIL. Soil Science, 170(10), 788–801. https://doi.org/10.1097/01.ss.0000190506.33675.e6
Rotenberg, D., MacGuidwin, A. E., Saeed, I. A. M., & Rouse, D. I. (2004). Interaction of spatially separated Pratylenchus penetrans and Verticillium dahliae on potato measured by impaired photosynthesis. Plant Pathology, 53(3), 294–302. https://doi.org/10.1111/j.0032-0862.2004.01005.x
Stone, A. G., Vallad, G. E., Cooperband, L. R., Rotenberg, D., Darby, H. M., James, R. V., … Goodman, R. M. (2003). Effect of Organic Amendments on Soilborne and Foliar Diseases in Field-Grown Snap Bean and Cucumber. Plant Disease, 87(9), 1037–1042. https://doi.org/10.1094/pdis.2003.87.9.1037