@article{moore_jennings_monks_boyette_leon_jordan_ippolito_blankenship_chang_2023, title={Evaluation of electrical and mechanical Palmer amaranth (Amaranthus palmeri) management in cucumber, peanut, and sweetpotato}, volume={1}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2023.1}, DOI={10.1017/wet.2023.1}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. D. and Jennings, Katherine M. M. and Monks, David W. W. and Boyette, Michael D. D. and Leon, Ramon G. G. and Jordan, David L. L. and Ippolito, Stephen J. J. and Blankenship, Colton D. D. and Chang, Patrick}, year={2023}, month={Jan} } @article{sims_mitchem_jennings_monks_jordan_hoffmann_2023, title={Tolerance of muscadine grape to 2,4-D choline postemergence-directed}, volume={2}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2023.8}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Sims, Kira C. and Mitchem, Wayne E. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Hoffmann, Mark}, year={2023}, month={Feb} } @article{basinger_hestir_jennings_monks_everman_jordan_2022, title={Detection of Palmer amaranth (Amaranthus palmeri) and large crabgrass (Digitaria sanguinalis) with in situ hyperspectral remote sensing. I. Effects of weed density and soybean presence}, volume={70}, ISSN={["1550-2759"]}, DOI={10.1017/wsc.2021.81}, abstractNote={Abstract}, number={2}, journal={WEED SCIENCE}, author={Basinger, Nicholas T. and Hestir, Erin L. and Jennings, Katherine M. and Monks, David W. and Everman, Wesley J. and Jordan, David L.}, year={2022}, month={Mar}, pages={198–212} } @article{smith_jennings_monks_jordan_reberg-horton_schwarz_2022, title={Evaluation of Sweetpotato Cultivars with Varying Canopy Architectures in Conventional and a Reduced-tillage Rye Production System}, volume={32}, ISSN={["1943-7714"]}, DOI={10.21273/HORTTECH04912.21}, number={2}, journal={HORTTECHNOLOGY}, author={Smith, Stephen C. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Reberg-Horton, S. Chris and Schwarz, Michael R.}, year={2022}, month={Apr}, pages={158–163} } @article{smith_jennings_monks_jordan_reberg-horton_schwarz_2022, title={Sweetpotato tolerance and Palmer amaranth control with indaziflam}, volume={3}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2022.13}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Smith, Stephen C. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Reberg-Horton, S. Chris and Schwarz, Michael R.}, year={2022}, month={Mar} } @article{sims_jennings_monks_jordan_hoffmann_mitchem_2022, title={Tolerance of plasticulture strawberry to 2,4-D choline applied to row middles}, volume={4}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2022.27}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Sims, Kira C. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Hoffmann, Mark and Mitchem, Wayne E.}, year={2022}, month={Apr} } @article{sims_jennings_monks_mitchem_jordan_hoffmann_2022, title={Tolerance of southern highbush blueberry to 2,4-D choline postemergence-directed}, volume={4}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2022.33}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Sims, Kira C. and Jennings, Katherine M. and Monks, David W. and Mitchem, Wayne E. and Jordan, David L. and Hoffmann, Mark}, year={2022}, month={Apr} } @article{moore_jennings_monks_jordan_leon_boyette_2021, title={Evaluating shade cloth to simulate Palmer amaranth (Amaranthus palmeri) competition in sweetpotato}, volume={69}, ISSN={["1550-2759"]}, DOI={10.1017/wsc.2021.21}, abstractNote={Abstract}, number={4}, journal={WEED SCIENCE}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Leon, Ramon G. and Boyette, Michael D.}, year={2021}, month={Jul}, pages={478–484} } @article{moore_jennings_monks_boyette_jordan_leon_2021, title={Herbicide systems including linuron for Palmer amaranth (Amaranthus palmeri) control in sweetpotato}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2020.63}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Boyette, Michael D. and Jordan, David L. and Leon, Ramon G.}, year={2021}, month={Feb}, pages={49–56} } @article{moore_jennings_monks_leon_boyette_jordan_2021, title={Influence of herbicides on germination and quality of Palmer amaranth (Amaranthus palmeri) seed}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2021.71}, abstractNote={Abstract}, number={5}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Leon, Ramon G. and Boyette, Michael D. and Jordan, David L.}, year={2021}, month={Oct}, pages={786–789} } @article{chaudhari_jennings_monks_mehra_2021, title={Interaction of common purslane (Portulaca oleracea) and Palmer amaranth (Amaranthus palmeri) with sweet potato (Ipomoea batatas) genotypes}, volume={101}, ISSN={["1918-1833"]}, DOI={10.1139/cjps-2020-0138}, abstractNote={ Greenhouse replacement series studies were conducted to determine the relative competitiveness of NC10-275 (unreleased, drought tolerant; upright, bushy, and vining growth with large leaves) and Covington (the most commonly grown genotype in North Carolina; vining growth with smaller leaves) sweet potato genotypes with weeds. Sweet potato genotypes were grown with Palmer amaranth (tall growing) or common purslane (low growing) at five planting (sweet potato to weed) proportions of 100:0, 75:25, 50:50, 25:75, and 0:100 at a density of four plants per pot. Reduction in common purslane shoot dry biomass was greater when growing with NC10-275 than when growing with Covington or alone. When growing with common purslane, shoot dry and root fresh biomass of Covington was 18% and 26% lower, respectively, than NC10-275. Relative yield (shoot dry biomass) and aggressivity index (AI) of common purslane was lower than both sweet potato genotypes. Palmer amaranth shoot dry biomass was similar when growing alone or with Covington, whereas it was reduced by 10% when growing with NC10-275 than alone. Palmer amaranth competition reduced shoot dry biomass and root fresh biomass of Covington by 23% and 42%, respectively, relative to NC10-275. Relative yield and AI of Palmer amaranth was greater than Covington but lower than NC10-275. This research indicates that sweet potato genotypes differ in their ability to compete with weeds. Both sweet potato genotypes were more competitive than common purslane, and the following species hierarchy exists: NC10-275 > Covington > common purslane. In contrast, NC10-275 was more competitive than Covington with Palmer amaranth, and the following species hierarchy exists: NC10-275 ≥ Palmer amaranth > Covington. }, number={4}, journal={CANADIAN JOURNAL OF PLANT SCIENCE}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Mehra, Lucky K.}, year={2021}, month={Aug}, pages={447–455} } @article{moore_jennings_monks_leon_jordan_boyette_2021, title={Safety and efficacy of linuron with or without an adjuvant or S-metolachlor for POST control of Palmer amaranth (Amaranthus palmeri) in sweetpotato}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2021.27}, abstractNote={Abstract}, number={3}, journal={WEED TECHNOLOGY}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Leon, Ramon G. and Jordan, David L. and Boyette, Michael D.}, year={2021}, month={Jun}, pages={471–475} } @article{moore_jennings_monks_jordan_boyette_leon_mahoney_everman_cahoon_2021, title={Susceptibility of Palmer amaranth accessions in North Carolina to atrazine, dicamba, S-metolachlor, and 2,4-D}, volume={11}, ISSN={["2374-3832"]}, url={https://doi.org/10.1002/cft2.20136}, DOI={10.1002/cft2.20136}, abstractNote={Core Ideas}, journal={CROP FORAGE & TURFGRASS MANAGEMENT}, publisher={Wiley}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Boyette, Michael D. and Leon, Ramon G. and Mahoney, Dennis J. and Everman, Wesley J. and Cahoon, Charles W.}, year={2021}, month={Nov} } @article{smith_jennings_monks_chaudhari_schultheis_reberg-horton_2020, title={Critical timing of Palmer amaranth (Amaranthus palmeri) removal in sweetpotato}, volume={34}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2020.1}, abstractNote={Abstract}, number={4}, journal={WEED TECHNOLOGY}, author={Smith, Stephen C. and Jennings, Katherine M. and Monks, David W. and Chaudhari, Sushila and Schultheis, Jonathan R. and Reberg-Horton, Chris}, year={2020}, month={Aug}, pages={547–551} } @article{lindley_jennings_monks_chaudhari_schultheis_waldschmidt_brownie_2020, title={Effect of bicyclopyrone herbicide on sweetpotato and Palmer amaranth (Amaranthus palmeri)}, volume={34}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2020.13}, abstractNote={Abstract}, number={4}, journal={WEED TECHNOLOGY}, author={Lindley, Jennifer J. and Jennings, Katherine M. and Monks, David W. and Chaudhari, Sushila and Schultheis, Jonathan R. and Waldschmidt, Matthew and Brownie, Cavell}, year={2020}, month={Aug}, pages={552–559} } @article{basinger_jennings_hestir_monks_jordan_everman_2020, title={Phenology affects differentiation of crop and weed species using hyperspectral remote sensing}, volume={34}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2020.92}, abstractNote={Abstract}, number={6}, journal={WEED TECHNOLOGY}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Hestir, Erin L. and Monks, David W. and Jordan, David L. and Everman, Wesley J.}, year={2020}, month={Dec}, pages={897–908} } @article{bertucci_bartley_jennings_monks_jackson_2020, title={Quantification of palmer amaranth seed number using a computerized particle analyzer}, volume={5}, ISSN={["2471-9625"]}, DOI={10.1002/ael2.20003}, abstractNote={Abstract}, number={1}, journal={AGRICULTURAL & ENVIRONMENTAL LETTERS}, author={Bertucci, Matthew B. and Bartley, Paul C., III and Jennings, Katherine M. and Monks, David W. and Jackson, Brian E.}, year={2020} } @article{baselga_schultheis_boyette_quesada-ocampo_starke_monks_2020, title={Vine Removal Prior to Harvest, and Curing Duration and Temperature Affect the Incidence and Severity of Internal Necrosis in 'Covington' Sweetpotato}, volume={30}, ISSN={["1943-7714"]}, DOI={10.21273/HORTTECH04408-19}, abstractNote={Internal necrosis (IN) is a physiological disorder that affects Covington, the most commonly grown sweetpotato (Ipomoea batatas) cultivar in North Carolina. Because IN affects the quality of sweetpotato storage roots, studies have been conducted since the first report of IN in 2006. Field studies (three in 2016 and two in 2017) were conducted to evaluate preharvest and postharvest treatments on the occurrence of IN in ‘Covington’ storage roots. Four preharvest treatments consisted of combinations of high chlorine or minimal chlorine potash fertilizer and mowing vs. not mowing before harvest. For postharvest treatments, 30 storage roots were obtained at harvest from each preharvest treatment plot and immediately cured in 75 and 85 °F rooms for a duration of 0.5, 1, 2, 3, and 5 weeks in 2016, and 0.5, 1, and 2 weeks in 2017. Shorter curing durations (0.5 and 1 week) coincided with industry recommendations while longer durations mimicked the challenges that some commercial facilities face when cooling down temperatures of rooms after curing is supposed to be concluded. Once curing temperature and curing duration treatments were completed, roots were placed in a 58 °F storage room at 85% relative humidity until cut. A control comparison was included in which harvested roots were placed in a 58 °F storage room (no curing) immediately after harvest. The storage roots from all temperature treatments were then cut 49 to 80 days after harvest, and incidence and severity of IN visually rated. Preharvest potash fertilizer treatments had minimal or no effect on occurrence of IN. However, mowing vines before harvest in several studies reduced IN incidence when roots were cured for more than 0.5 week at temperatures of at least 75 °F. Lower temperature (75 vs. 85 °F) and shorter curing duration (0.5 vs. 1, 2, 3, or 5 weeks) resulted in reduced IN occurrence in ‘Covington’ sweetpotato.}, number={5}, journal={HORTTECHNOLOGY}, author={Baselga, Fernando Montero de Espinosa and Schultheis, Jonathan R. and Boyette, Michael D. and Quesada-Ocampo, Lina M. and Starke, Keith D. and Monks, David W.}, year={2020}, month={Oct}, pages={544–551} } @article{basinger_jennings_monks_jordan_everman_hestir_waldschmidt_smith_brownie_2019, title={Interspecific and intraspecific interference of Palmer amaranth (Amaranthus palmeri) and large crabgrass (Digitaria sanguinalis) in sweetpotato}, volume={67}, ISSN={["1550-2759"]}, DOI={10.1017/wsc.2019.16}, abstractNote={Abstract}, number={4}, journal={WEED SCIENCE}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Everman, Wesley J. and Hestir, Erin L. and Waldschmidt, Matthew D. and Smith, Stephen C. and Brownie, Cavell}, year={2019}, month={Jul}, pages={426–432} } @article{basinger_jennings_monks_jordan_everman_hestir_bertucci_brownie_2019, title={Large crabgrass (Digitaria sanguinalis) and Palmer amaranth (Amaranthus palmeri) intraspecific and interspecific interference in soybean}, volume={67}, ISSN={["1550-2759"]}, DOI={10.1017/wsc.2019.43}, abstractNote={Abstract}, number={6}, journal={WEED SCIENCE}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Everman, Wesley J. and Hestir, Erin L. and Bertucci, Matthew B. and Brownie, Cavell}, year={2019}, month={Nov}, pages={649–656} } @article{smith_jennings_monks_schultheis_reberg-horton_2019, title={Tolerance of Sweetpotato to Herbicides Applied in Plant Propagation Beds}, volume={33}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2018.103}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Smith, Stephen C. and Jennings, Katherine M. and Monks, David W. and Schultheis, Jonathan R. and Reberg-Horton, S. Chris}, year={2019}, month={Feb}, pages={147–152} } @article{bertucci_suchoff_jennings_monks_gunter_schultheis_louws_2018, title={Comparison of Root System Morphology of Cucurbit Rootstocks for Use in Watermelon Grafting}, volume={28}, ISSN={["1943-7714"]}, url={https://publons.com/wos-op/publon/39930266/}, DOI={10.21273/HORTTECH04098-18}, abstractNote={Grafting of watermelon (Citrullus lanatus) is an established production practice that provides resistance to soilborne diseases or tolerance to abiotic stresses. Watermelon may be grafted on several cucurbit species (interspecific grafting); however, little research exists to describe root systems of these diverse rootstocks. A greenhouse study was conducted to compare root system morphology of nine commercially available cucurbit rootstocks, representing four species: pumpkin (Cucurbita maxima), squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and an interspecific hybrid squash (C. maxima × C. moschata). Rootstocks were grafted with a triploid watermelon scion (‘Exclamation’), and root systems were compared with nongrafted (NG) and self-grafted (SG) ‘Exclamation’. Plants were harvested destructively at 1, 2, and 3 weeks after transplant (WAT), and data were collected on scion dry weight, total root length (TRL), average root diameter, root surface area, root:shoot dry-weight ratio, root diameter class proportions, and specific root length. For all response variables, the main effect of rootstock and rootstock species was significant (P < 0.05). The main effect of harvest was significant (P < 0.05) for all response variables, with the exception of TRL proportion in diameter class 2. ‘Ferro’ rootstock produced the largest TRL and root surface area, with observed values 122% and 120% greater than the smallest root system (‘Exclamation’ SG), respectively. Among rootstock species, pumpkin produced the largest TRL and root surface area, with observed values 100% and 82% greater than those of watermelon, respectively. These results demonstrate that substantial differences exist during the initial 3 WAT in root system morphology of rootstocks and rootstock species available for watermelon grafting and that morphologic differences of root systems can be characterized using image analysis.}, number={5}, journal={HORTTECHNOLOGY}, publisher={American Society for Horticultural Science}, author={Bertucci, Matthew B. and Suchoff, David H. and Jennings, Katherine M. and Monks, David W. and Gunter, Christopher C. and Schultheis, Jonathan R. and Louws, Frank J.}, year={2018}, month={Oct}, pages={629–636} } @article{mcgowen_jennings_chaudhari_monks_schultheis_reberg-horton_2018, title={Critical Period for Palmer Amaranth (Amaranthus palmeri) Control in Pickling Cucumber}, volume={32}, ISSN={0890-037X, 1550-2740}, url={https://www.cambridge.org/core/journals/weed-technology/article/critical-period-for-palmer-amaranth-amaranthus-palmeri-control-in-pickling-cucumber/4BCED15B7D9F47DAFB0DF91FC9112015}, DOI={10.1017/wet.2018.58}, abstractNote={Abstract}, number={5}, journal={Weed Technology}, author={McGowen, Samuel J. and Jennings, Katherine M. and Chaudhari, Sushila and Monks, David W. and Schultheis, Jonathan R. and Reberg-Horton, Chris}, year={2018}, month={Oct}, pages={586–591} } @article{bertucci_jennings_monks_schultheis_louws_jordan_brownie_2018, title={Critical Period for Weed Control in Grafted and Nongrafted Watermelon Grown in Plasticulture}, volume={67}, ISSN={1550-2759}, url={http://dx.doi.org/10.1017/WSC.2018.76}, DOI={10.1017/WSC.2018.76}, abstractNote={Abstract}, number={2}, journal={Weed Science}, publisher={Cambridge University Press (CUP)}, author={Bertucci, Matthew B. and Jennings, Katherine M. and Monks, David W. and Schultheis, Jonathan R. and Louws, Frank J. and Jordan, David L. and Brownie, Cavell}, year={2018}, month={Nov}, pages={221–228} } @article{bertucci_jennings_monks_schultheis_perkins-veazie_louws_jordan_2018, title={Early Season Growth, Yield, and Fruit Quality of Standard and Mini Watermelon Grafted onto Several Commercially Available Cucurbit Rootstocks}, volume={28}, ISSN={["1943-7714"]}, DOI={10.21273/HORTTECH04051-18}, abstractNote={Grafting watermelon (Citrullus lanatus) is a common practice in many parts of the world and has recently received increased interest in the United States. The present study was designed to evaluate early season growth, yield, and fruit quality of watermelon in response to grafting and in the absence of known disease pressure in a fumigated system. Field experiments were conducted using standard and mini watermelons (cv. Exclamation and Extazy, respectively) grafted onto 20 commercially available cucurbit rootstocks representing four species: giant pumpkin (Cucurbita maxima), summer squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and interspecific hybrid squash [ISH (C. maxima × Cucurbita moschata)]. Nongrafted ‘Exclamation’ and ‘Extazy’ were included as controls. To determine early season growth, leaf area was measured at 1, 2, and 3 weeks after transplant (WAT). At 1 WAT, nongrafted ‘Exclamation’ produced the smallest leaf area; however, at 3 WAT, nongrafted ‘Exclamation’ produced the largest leaf area in 2015, and no differences were observed in 2016. Leaf area was very similar among rootstocks in the ‘Extazy’ study, with minimal differences observed. Marketable yield included fruit weighing ≥9 and ≥3 lb for ‘Exclamation’ and ‘Extazy’, respectively. In the ‘Exclamation’ study, highest marketable yields were observed in nongrafted ‘Exclamation’, and ‘Exclamation’ grafted to ‘Pelops’, ‘TZ148’, and ‘Coloso’, and lowest marketable yields were observed when using ‘Marvel’ and ‘Kazako’ rootstocks, which produced 47% and 32% of nongrafted ‘Exclamation’ yield, respectively. In the ‘Extazy’ study, the highest marketable yield was observed in nongrafted ‘Extazy’, and ‘Kazako’ produced the lowest yields (48% of nongrafted ‘Extazy’). Fruit quality was determined by measuring fruit acidity (pH), soluble solids concentration (SSC), lycopene content, and flesh firmness from a sample of two fruit from each plot from the initial two harvests of each year. Across both studies, rootstock had no effect on SSC or lycopene content. As reported in previous studies, flesh firmness was increased as a result of grafting, and nongrafted ‘Exclamation’ and ‘Extazy’ had the lowest flesh firmness among standard and mini watermelons, respectively. The present study evaluated two scions with a selection of 20 cucurbit rootstocks and observed no benefits in early season growth, yield, or phytonutrient content. Only three of 20 rootstocks in each study produced marketable yields similar to the nongrafted treatments, and no grafted treatment produced higher yields than nongrafted ‘Exclamation’ or ‘Extazy’. Because grafted seedlings have an associated increase in cost and do not produce increased yields, grafting in these optimized farming systems and using fumigated soils does not offer an advantage in the absence of soilborne pathogens or other stressors that interfere with watermelon production.}, number={4}, journal={HORTTECHNOLOGY}, publisher={American Society for Horticultural Science}, author={Bertucci, Matthew B. and Jennings, Katherine M. and Monks, David W. and Schultheis, Jonathan R. and Perkins-Veazie, Penelope and Louws, Frank J. and Jordan, David L.}, year={2018}, month={Aug}, pages={459–469} } @article{bertucci_jennings_monks_jordan_schultheis_louws_waldschmidt_2018, title={Effect of Bicyclopyrone on Triploid Watermelon in Plasticulture}, volume={32}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1017/WET.2018.36}, DOI={10.1017/WET.2018.36}, abstractNote={Abstract}, number={4}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Bertucci, Matthew B. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Schultheis, Jonathan R. and Louws, Frank J. and Waldschmidt, Matthew D.}, year={2018}, month={Jun}, pages={439–443} } @article{dittmar_schultheis_jennings_monks_chaudhari_meyers_jiang_2018, title={Effect of Cultivar, Ethephon, Flooding, and Storage Duration on Sweetpotato Internal Necrosis}, volume={28}, ISSN={["1943-7714"]}, DOI={10.21273/horttech03917-17}, abstractNote={The reason for internal necrosis occurrences in sweetpotato (Ipomoea batatas) storage roots is not well understood. This disorder begins internally in the storage roots as small light brown spots near the proximal end of the root that eventually can become more enlarged as brown/black regions in the cortex. The objective of this study was to determine the effect of ethephon and flooding on the development of internal necrosis in the sweetpotato cultivars Beauregard, Carolina Ruby, and Covington over storage durations from 9 to 150 days after harvest (DAH) when roots had been cured. Soil moisture treatments were no-flooding, and simulated flooding that was created by applying 10 inches of overhead irrigation during 2 weeks before harvest. Ethephon was applied at 0, 0.75, and 0.98 lb/acre 2 weeks before harvest. Overall, ‘Covington’ and ‘Carolina Ruby’ had greater internal necrosis incidence (22% to 65% and 32% to 51%, respectively) followed by ‘Beauregard’ (9% to 22%) during storage duration from 9 to 150 DAH at both soil moistures. No significant change was observed for either internal necrosis incidence or severity for ‘Beauregard’ and ‘Carolina Ruby’ over the storage duration of 9–150 DAH. However, there was an increase of internal necrosis incidence and severity 9–30 DAH in ‘Covington’, with incidence and severity remaining similar 30–150 DAH. Storage roots in treatments sprayed with 0.75 or 0.98 lb/acre ethephon had higher internal necrosis incidence and severity compared with the nontreated, regardless of cultivars at both soil moistures. This research confirms that sweetpotato cultivars differ in their susceptibility to internal necrosis (incidence and severity), ethephon applied to foliage can contribute to internal necrosis development in storage roots, and internal necrosis incidence reaches a maximum by 30 DAH in ‘Covington’ and 9 DAH in ‘Carolina Ruby’ and ‘Beauregard’.}, number={3}, journal={HORTTECHNOLOGY}, author={Dittmar, Peter J. and Schultheis, Jonathan R. and Jennings, Katherine M. and Monks, David W. and Chaudhari, Sushila and Meyers, Stephen and Jiang, Chen}, year={2018}, month={Jun}, pages={246–251} } @article{buckelew_mitchem_monks_chaudhari_jennings_mehra_2018, title={Effects of Vegetation-Free Strip Width and Irrigation on Newly Planted Peach}, volume={19}, ISSN={1553-8362 1553-8621}, url={http://dx.doi.org/10.1080/15538362.2018.1545622}, DOI={10.1080/15538362.2018.1545622}, abstractNote={ABSTRACT Field experiments were conducted at two locations (Clayton and Jackson Springs, NC) to determine the influence of vegetation-free strip width (VFSW) and irrigation on newly planted peach growth and yield in a low-density orchard with a volunteer weedy ground cover. The experiments included VFSW of 0, 0.6, 1.2, 2.4, 3, or 3.6 m under irrigated or nonirrigated conditions. Seasonal variation in the orchard floor vegetation was observed as different weed species reported in summer and winter. However, this difference was not apparent with respect to VFSF and irrigation. At Jackson Springs, NC, the predicted irrigated VFSW which would produce the same trunk cross-sectional area (TCSA) as the grower standard (3-m nonirrigated) was 1.5, 1.3, and 0.8 m for one-, two-, and three-year-old trees, respectively. The predicted irrigated VFSW which would produce the same yield as the grower standard was 1.16 m. At Clayton, TCSA and fruit yield were not different by irrigation, but did increase linearly with VFSW. At both locations, leaf nitrogen (N) concentration was lower in irrigated trees than nonirrigated trees. Leaf N, leaf area, and SPAD were positively related to VFSW at Jackson Springs. In contrast, leaf N concentration was not different by VFSW at Clayton. However, leaf area and SPAD were positively related to VFSW at Clayton. These results suggest that a 1.5 m VFSW combined with proper irrigation and fertilization will produce tree growth and yield in newly planted orchard with volunteer weedy vegetation similar to the current grower standard in the southeastern USA.}, number={1}, journal={International Journal of Fruit Science}, publisher={Informa UK Limited}, author={Buckelew, Juliana K. and Mitchem, Wayne E. and Monks, David W. and Chaudhari, Sushila and Jennings, Katie M. and Mehra, Lucky K.}, year={2018}, month={Nov}, pages={75–90} } @article{buckelew_mitchem_chaudhari_monks_jennings_2018, title={Evaluating weed control and response of newly planted peach trees to herbicides}, volume={18}, ISSN={["1553-8621"]}, DOI={10.1080/15538362.2018.1441772}, abstractNote={ABSTRACT Field experiments were conducted in North Carolina to determine peach response to herbicides. Mesotrione, rimsulfuron, and sulfentrazone did not injure newly planted peach trees. However, halosulfuron at the higher rate caused injury to peach trees, but did not reduce tree cross-sectional area or winter pruning weight. Another field experiment was conducted to determine the effect of herbicide-based programs on weed control. Sulfentrazone alone controlled common lamb’s-quarters and henbit but provided poor control of large crabgrass and yellow foxtail. However, a tank mix of norflurazon or oryzalin with sulfentrazone improved control of these weeds over sulfentrazone alone. Terbacil alone or in tank mix rimsulfuron, and flumioxazin alone gave excellent control of large crabgrass and yellow foxtail.}, number={4}, journal={INTERNATIONAL JOURNAL OF FRUIT SCIENCE}, author={Buckelew, Juliana K. and Mitchem, Wayne E. and Chaudhari, Sushila and Monks, David W. and Jennings, Katie M.}, year={2018}, pages={383–393} } @article{basinger_jennings_monks_mitchem_perkins-veazie_chaudhari_2018, title={In-row Vegetation-free Strip Width Effect on Established 'Navaho' Blackberry}, volume={32}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2017.85}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Monks, David W. and Mitchem, Wayne E. and Perkins-Veazie, Penelope M. and Chaudhari, Sushila}, year={2018}, pages={85–89} } @article{bertucci_jennings_monks_schultheis_louws_jordan_2018, title={Interference of Palmer amaranth (Amaranthus palmeri) Density in Grafted and Nongrafted Watermelon}, volume={67}, ISSN={1550-2759}, url={http://dx.doi.org/10.1017/WSC.2018.77}, DOI={10.1017/WSC.2018.77}, abstractNote={Abstract}, number={2}, journal={Weed Science}, publisher={Cambridge University Press (CUP)}, author={Bertucci, Matthew B. and Jennings, Katherine M. and Monks, David W. and Schultheis, Jonathan R. and Louws, Frank J. and Jordan, David L.}, year={2018}, month={Dec}, pages={229–238} } @article{beam_chaudhari_jennings_monks_meyers_schultheis_waldschmidt_main_2018, title={Response of Palmer Amaranth and Sweetpotato to Flumioxazin/Pyroxasulfone}, volume={33}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1017/wet.2018.80}, DOI={10.1017/wet.2018.80}, abstractNote={Abstract}, number={1}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Beam, Shawn C. and Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Meyers, Stephen L. and Schultheis, Jonathan R. and Waldschmidt, Mathew and Main, Jeffrey L.}, year={2018}, month={Nov}, pages={128–134} } @article{beam_jennings_chaudhari_monks_schultheis_waldschmidt_2018, title={Response of Sweetpotato Cultivars to Linuron Rate and Application Time}, volume={32}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2018.68}, abstractNote={Abstract}, number={6}, journal={WEED TECHNOLOGY}, author={Beam, Shawn C. and Jennings, Katherine M. and Chaudhari, Sushila and Monks, David W. and Schultheis, Jonathan R. and Waldschmidt, Mathew}, year={2018}, month={Dec}, pages={665–670} } @article{chaudhari_jennings_monks_jordan_gunter_louws_2017, title={Absorption, Translocation, and Metabolism of14C-Halosulfuron in Grafted Eggplant and Tomato}, volume={31}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1017/WET.2017.65}, DOI={10.1017/WET.2017.65}, abstractNote={Grafted plants are a combination of two different interspecific or intraspecific scion and rootstock. Determination of herbicidal selectivity of the grafted plant is critical given their increased use in vegetable production. Differential absorption, translocation, and metabolism play an important role in herbicide selectivity of plant species because these processes affect the herbicide amount delivered to the site of action. Therefore, experiments were conducted to determine absorption, translocation, and metabolism of halosulfuron in grafted and non-grafted tomato and eggplant. Transplant type included non-grafted tomato cultivar Amelia, non-grafted eggplant cultivar Santana, Amelia scion grafted onto Maxifort tomato rootstock (A-Maxifort) and Santana scion grafted onto Maxifort rootstock (S-Maxifort). Plants were treated POST with commercially formulated halosulfuron at 39 g ai ha-1followed by14C-halosulfuron under controlled laboratory conditions. Amount of14C-halosufuron was quantified in leaf wash, treated leaf, scion shoot, rootstock shoot, and root at 6, 12, 24, 48, and 96 h after treatment (HAT) using liquid scintillation spectrometry. No differences were observed between transplant types with regard to absorption and translocation of14C-halosulfuron. Absorption of14C-halosulfuron increased with time, reaching 10 and 74% of applied at 6 and 96 HAT, respectively. Translocation of14C-halosulfuron was limited to the treated leaf, which reached maximum (66% of applied) at 96 HAT, whereas minimal (<4% of applied) translocation occurred in scion shoot, rootstock shoot, and root. Tomato plants metabolized halosulfuron faster compared to eggplant regardless of grafting. Of the total amount of14C-halosulfuron absorbed into the plant, 9 to 14% remained in the form of the parent compound in tomato compared with 25 to 26% in eggplant at 48 HAT. These results indicate that grafting did not affect absorption, translocation, and metabolism of POST halosulfuron in tomato and eggplant.}, number={6}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Louws, Frank J.}, year={2017}, month={Sep}, pages={908–914} } @article{dayton_chaudhari_jennings_monks_hoyt_2017, title={Effect of Drip-Applied Metam-Sodium and S-Metolachlor on Yellow Nutsedge and Common Purslane in Polyethylene-Mulched Bell Pepper and Tomato}, volume={31}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2017.16}, abstractNote={Field studies were conducted to determine the effect of metam sodium andS-metolachlor applied through drip irrigation on yellow nutsedge, common purslane, bell pepper, and tomato (injury and yield) in plasticulture. Treatments consisted of weed-free, weedy,S-metolachlor alone at 0.85 kg ha-1, methyl bromide, metam sodium (43, 86, 176, and 358 kg ai ha–1) alone, and metam sodium (43, 86, 176, and 358 kg ai ha–1) followed byS-metolachlor at 0.85 kg ha–1. Metam sodium andS-metolachlor was applied preplant 2 wk before and 2 wk after transplanting (WAT) through drip irrigation, respectively. No injury was observed to bell pepper and tomato from metam sodium alone, or metam sodium fbS-metolachlor treatments. With the exception of yellow nutsedge density 15 WAT in bell pepper, herbicide program did not influence yellow nutsedge and common purslane density at 4 and 6 WAT and bell pepper and tomato yield. At 15 WAT, yellow nutsedge density was lower in treatments that received metam sodium fbS-metolachlor compared to those treatments that only received metam sodium. Drip-applied metam sodium at 176 and 358 kg ha–1in both bell pepper and tomato provided similar control of common purslane, and yellow nutsedge, produced comparable yields, and failed to elicit any negative crop growth responses when compared to MeBr. In conclusion, metam sodium at 176 and 358 kg ha–1fbS-metolachlor 0.85 kg ha–1is an effective MeBr alternative for season long weed control in plasticulture bell pepper and tomato.}, number={3}, journal={WEED TECHNOLOGY}, author={Dayton, Daniel M. and Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Hoyt, Greg W.}, year={2017}, pages={421–429} } @article{beam_jennings_monks_schultheis_chaudhari_2017, title={Influence of Herbicides on the Development of Internal Necrosis of Sweetpotato}, volume={31}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1017/WET.2017.60}, DOI={10.1017/WET.2017.60}, abstractNote={Field studies were conducted to determine the influence of herbicides on the development of internal necrosis (IN) in sweetpotato storage roots. In a slip propagation study, herbicide treatments included PRE application (immediately after covering seed roots with soil) of clomazone (0.42, 0.84 kg ai ha-1), flumioxazin (0.11, 0.21 kg ai ha-1), fomesafen (0.28, 0.56 kg ai ha-1), linuron (0.56, 1.12 kg ai ha-1),S-metolachlor (0.8, 1.6 kg ai ha-1), flumioxazin plusS-metolachlor (0.11 + 0.8 or 1.6 kg ha-1), and napropamide (1.12, 2.24 kg ai ha-1), and POST application (2 to 4 wk prior to cutting slips) of ethephon (0.84, 1.26 kg ai ha-1) and paraquat (0.14, 0.28 kg ai ha-1). In a field production study, flumioxazin, fomesafen, linuron, and paraquat were applied PREPLANT (one d prior to sweetpotato transplanting), clomazone,S-metolachlor, and napropamide were applied PRE [4 d after transplanting (DAP)], flumioxazin PREPLANT followed by (fb) S-metolachlor PRE, and ethephon applied POST (2 wk prior to harvest). Herbicide rates were similar to those used in the slip propagation study. Yield of sweetpotato in both studies was not affected by herbicide treatment. In both studies, IN incidence and severity increased with time and was greatest at 60 d after curing. No difference was observed between herbicide treatments for IN incidence and severity in the slip production study which indicates herbicide application at time of slip propagation does not impact the development of IN. In the field production study, the only treatment that increased IN incidence compared to the nontreated was ethephon with 53% and 2.3 incidence and severity, respectively. The presence of IN affected roots in nontreated plots indicates that some other pre- or post-curing factors other than herbicides are responsible for the development of IN. However, the ethephon application prior to sweetpotato root harvest escalates the development of IN.}, number={6}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Beam, Shawn C. and Jennings, Katherine M. and Monks, David W. and Schultheis, Jonathan R. and Chaudhari, Sushila}, year={2017}, month={Sep}, pages={863–869} } @article{barkley_chaudhari_schultheis_jennings_bullen_monks_2017, title={Optimizing Sweetpotato Seed Root Density and Size for Slip Production}, volume={27}, ISSN={["1943-7714"]}, DOI={10.21273/horttech03435-16}, abstractNote={There is a research gap with respect to documenting the effects of sweetpotato (Ipomoea batatas) seed root density and size on transplant yield and quality. Field studies were conducted in 2012 and 2014 to determine the effect of sweetpotato seed root (canner size) density [12, 24, 37, 49, 61, 73, and 85 bushels [bu (50 lb)] per 1000 ft2] on ‘Covington’ and ‘Evangeline’ slip production in propagation beds. Another field study was conducted in 2012 and 2013; treatments included canner, no. 1, and jumbo-size ‘Covington’ roots at 49 bu/1000 ft2, to determine the effect of seed root size on slip production. As seed root density increased in the propagation bed, transplant production increased with no change in slip quality as measured by node counts and slip length except for stem diameter. In 2012, the best marketable slip yield was obtained at root densities of 73 and 85 bu/1000 ft2. In 2014, marketable slip production of ‘Evangeline’ increased as seed root density increased at a greater rate than ‘Covington’. In 2014, the best seed root density for marketable slip production was 49 to 85 bu/1000 ft2 for ‘Covington’ and 85 bu/1000 ft2 for ‘Evangeline’. In 2012, potential slip revenues increased with an increase in seed root density up to 73 bu/1000 ft2. In 2014, revenue trend was similar for ‘Covington’ as 2012; however, for ‘Evangeline’, revenue was greatest at 85 bu/1000 ft2. Seed root size had no effect on marketable slip production when using a once-over harvest system. Results suggest growers would use a seed root density from 49 to 85 bu/1000 ft2 depending on variety, and any size roots for production of optimum marketable slips. Selection of optimum seed root density also depends on grower needs; e.g., high seed root density strategy will have a higher risk due to the upfront, higher seed costs, but potentially have higher profits at harvest time. Lower seed root density strategy would be a lower initial risk with a lower seed cost, but also potentially have lower net revenues.}, number={1}, journal={HORTTECHNOLOGY}, author={Barkley, Susan L. and Chaudhari, Sushila and Schultheis, Jonathan R. and Jennings, Katherine M. and Bullen, Stephen G. and Monks, David W.}, year={2017}, month={Feb}, pages={7–15} } @article{chaudhari_jennings_monks_jordan_gunter_louws_2017, title={Response of Drought-Stressed Grafted and Nongrafted Tomato to Postemergence Metribuzin}, volume={31}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2017.12}, abstractNote={Tomato grafting is practiced worldwide as an innovative approach to manage stress from drought, waterlogging, insects, and diseases. Metribuzin is a commonly used herbicide in tomato but has potential to cause injury after application if plants are under stress. The influence of metribuzin on grafted tomato under drought-stress has not been studied. Greenhouse experiments were conducted in Raleigh, NC to determine the tolerance of drought-stressed grafted and non-grafted tomato to metribuzin. The tomato cultivar ‘Amelia’ was used as the scion in grafted tomato, and for the non-grafted control. Two hybrid tomato ‘Beaufort’ and ‘Maxifort’ were used as rootstocks for grafted plants. Drought-stress treatments included: no drought-stress; 3 d of drought-stress before metribuzin application with no drought-stress after application (3 d DSB); and 3 d of drought-stress before metribuzin application with 3 d of drought-stress after application (3 d DSBA). Metribuzin was applied at 550 g ai ha−1. No difference in injury from metribuzin was observed in grafted and non-grafted plants. However, at 7 and 14 d after metribuzin treatment (DMT), less injury was observed on tomato in the 3 d DSBA treatment (5 and 2% injury, respectively) than on plants in the 3 d DSB treatment (15 and 8% injury, respectively) or those that were never drought-stressed (18 and 11% injury, respectively). Photosynthesis and stomatal conductance measured prior to metribuzin application were reduced similarly in grafted and non-grafted tomato subjected to drought-stress. Photosynthesis and stomatal conductance of grafted and non-grafted tomato at 7 DMT was not different among drought-stress treatments or metribuzin treatments. Grafted and non-grafted tomato plants under drought-stress exhibit similar tolerance to metribuzin. The risk of metribuzin injury to grafted tomato under drought-stress is similar to non-grafted tomato.}, number={3}, journal={WEED TECHNOLOGY}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Louws, Frank J.}, year={2017}, pages={447–454} } @article{coneybeer-roberts_jennings_monks_burton_stowe_2017, title={Seed Biology of the Weed Maryland Meadowbeauty (Rhexia mariana L.) in Blueberry (Vaccinium spp.)}, volume={17}, ISSN={["1553-8621"]}, DOI={10.1080/15538362.2017.1317316}, abstractNote={ABSTRACT Studies were conducted at three locations across the North Carolina coastal plain region to determine sexual reproductive potential, seedbank density, frequency of seed dormancy, and effect of temperature on Maryland meadowbeauty seed germination. Seed capsule density ranged from 500 per m2 to 1124 per m2 across locations. Each capsule contained an average of 74 seeds. Seeds germinated only in the 35/20 °C temperature regime, which represents the hottest month (August) of the growing season in southeastern North Carolina. Total number of germinated seeds differed across locations and ranged from 30% to 57%. The percent (average) of viable (66) and nonviable (26) meadowbeauty seeds was not different across locations. Relative germination and seed dormancy percentages were calculated based on the number of viable seeds. The percent relative germination and seed dormancy were different across locations and ranged from 47% to 86% and 14% to 55%, respectively. The highest number of germination resulted from 90 days of stratification. On average, 27 seeds germinated among soil samples, which is equivalent to 989 seeds per m2. The data indicate that the populations of meadowbeauty in blueberry fields have the potential to sexually reproduce and contribute 5 × 106 to 1.1 × 107 seed capsules/ha and 3.7 × 108 to 8.3 × 108 seeds/ha of infestation. Freshly mature seeds can germinate and contribute 1.79 × 108 to 7.14 × 108 seedlings/ha in the year the seeds are produced and 5.18 × 107 to 4.4 × 108 seeds/ha can be dormant and incorporated into the seed bank on an annual basis. Approximately 9.89 × 106 seeds/ha are dormant and viable in the soil and have the potential to germinate following adequate stratification.}, number={3}, journal={INTERNATIONAL JOURNAL OF FRUIT SCIENCE}, author={Coneybeer-Roberts, Meagan M. and Jennings, Katherine M. and Monks, David W. and Burton, Michael G. and Stowe, Patricia S.}, year={2017}, pages={323–332} } @article{meyers_jennings_monks_2017, title={Sweetpotato Response to Simulated Glyphosate Wick Drip}, volume={31}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-16-00073.1}, abstractNote={Field studies were conducted in 2009 at Clinton, NC and 2014 at Pontotoc, MS to determine the influence of simulated glyphosate drip on sweetpotato yield and quality. Treatments consisted of three glyphosate solution (140 g ae L–1) drip volumes (0.16, 0.32 and 0.48 ml) by four application timings [(4 wk after transplanting (WAP); 6 WAP; 8 WAP; and 4 WAP followed by (fb) 6 WAP fb 8 WAP]. A non-treated check was included for comparison. Visual sweetpotato injury consisted of chlorosis at the shoot tips approximately 1 wk after treatment fb necrosis and stunting. At 6 WAP and 8 WAP, sweetpotato injury following glyphosate applied 4 WAP was 71 and 65%, respectively. Injury from glyphosate applied 4 WAP fb 6 WAP was 78%. Injury from glyphosate applied 6 WAP was 26% at 8 WAP. In 2009, jumbo, no. 1, canner, and marketable yield of the non-treated check were two to three times greater than glyphosate treatments (0.16, 0.32, 0.48 ml). Likewise, yield of the non-treated check was substantially greater than those treated with 0.16 to 0.48 ml glyphosate solution in 2014. In 2009 and 2014, sweetpotato yield of all grades increased as glyphosate application timing was delayed. In 2009, no. 1 yield from glyphosate 8 WAP (8,210 kg ha–1) was similar to the non-treated check. In 2009, there were no cracked storage roots in the non-treated check. However, sweetpotatoes receiving 0.16 to 0.48 ml glyphosate solution displayed 8 to 17%, 11 to 18%, 5 to 13%, and 11 to 16% cracking (by weight) in jumbo, no. 1, canner, and marketable storage roots, respectively. Compared to the non-treated check, glyphosate applied 4 WAP, 6 WAP, or 4 WAP fb 6 WAP fb 8 WAP had a greater percentage of cracked marketable sweetpotato storage roots.}, number={1}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W.}, year={2017}, pages={130–135} } @article{meyers_jennings_monks_2017, title={Sweetpotato Tolerance and Palmer Amaranth Control with Metribuzin and Oryzalin}, volume={31}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1017/WET.2017.56}, DOI={10.1017/WET.2017.56}, abstractNote={Field studies were conducted in Clinton, NC in 2007 and 2009 to determine sweetpotato crop response and Palmer amaranth control with metribuzin and oryzalin. Treatments consisted of 140 and 202 g ai ha−1metribuzin applied immediately after transplanting [0 wk after transplanting (WAP)] or 2 WAP, 560 and 1121 g ha−1oryzalin 0 WAP, and tank mixes of metribuzin (140 or 202 g ha−1) and oryzalin (560 or 1,121 g ha−1) 0 WAP. At 2 WAP, metribuzin alone applied 0 WAP resulted in greater crop injury (33%) than oryzalin alone (1%), and the tank mix of metribuzin plus oryzalin resulted in greater crop injury (49%) than either herbicide applied alone. Greater crop injury occurred when metribuzin was applied at 202 g ha−1(54%) than 140 g ha−1(34%). Levels of injury were similar at 4 WAP (34, 8, and 52% for metribuzin, oryzalin, and the tank mix, respectively). At 4 WAP, injury from metribuzin was greater when it was applied 0 WAP (34%) compared to 2 WAP (18%). By 10 WAP, injury from metribuzin applied at 2 WAP was only 4%. At 4 WAP, Palmer amaranth control was excellent for all treatments and ≥98%. At 10 WAP, control among treatments ranged from 77% to 85%. Palmer amaranth control provided by metribuzin was similar for applications made 0 WAP (78%) and 2 WAP (77%). Oryzalin alone provided similar control (85%) to metribuzin alone 0 WAP, but greater control than the tank mix (77%). Neither metribuzin nor oryzalin rate differed in weed control provided at 10 WAP. Oryzalin 0 WAP and metribuzin 2 WAP provided no. 1 sweetpotato yields equivalent to the hand-weeded check. No. 1 yields of all other treatments were less than the hand-weeded check but greater than the weedy check.}, number={6}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W.}, year={2017}, month={Sep}, pages={903–907} } @article{barkley_schultheis_chaudhari_johanningsmeier_jennings_truong_monks_2017, title={Yield and Consumer Acceptability of 'Evangeline' Sweetpotato for Production in North Carolina}, volume={27}, ISSN={["1943-7714"]}, DOI={10.21273/horttech03533-16}, abstractNote={Studies were conducted in 2012 and 2013 to compare Evangeline to various sweetpotato (Ipomoea batatas) varieties (Bayou Belle, Beauregard, Bonita, Covington, NC05-198, and Orleans) for commercial production in North Carolina. In another study, microwaved and oven-baked ‘Evangeline’ and ‘Covington’ sweetpotato roots were subjected to analysis of chemical and physical properties [color, dry matter (DM), texture, and sugar] and to sensory evaluation for determining consumer acceptance. ‘NC05-198’ produced the highest no. 1 grade sweetpotato 600 bushels [bu (50 lb)] per acre and total marketable storage root yield was similar to ‘Bayou Belle’ and ‘Beauregard’ (841, 775, and 759 bu/acre, respectively). No. 1 and marketable root yields were similar between ‘Orleans’ and ‘Beauregard’. However, ‘Orleans’ produced more uniform roots than ‘Beauregard’, in which the latter had higher cull production. ‘Evangeline’ was comparable to no. 1 yield of ‘Bayou Belle’, ‘Orleans’, and ‘Covington’, which indicates the ability of this variety to produce acceptable yields in North Carolina conditions. ‘Covington’ had slightly higher DM than ‘Evangeline’, but instrumental texture analysis showed that these varieties did not differ significantly in firmness after cooking. However, microwaved roots were measurably firmer than oven-baked roots for both varieties. In this study, ‘Evangeline’ had higher levels of fructose and glucose, with similar levels of sucrose and maltose to ‘Covington’. Consumers (n = 100) indicated no difference between varieties in their “just about right” moisture level, texture, and flavor ratings, but showed a preference for Evangeline flesh color over Covington. Consumers in this study preferred oven-baked over microwaved sweetpotato (regardless of variety) and indicated that Evangeline is as acceptable as the standard variety Covington when grown in the North Carolina environment.}, number={2}, journal={HORTTECHNOLOGY}, author={Barkley, Susan L. and Schultheis, Jonathan R. and Chaudhari, Sushila and Johanningsmeier, Suzanne D. and Jennings, Katherine M. and Truong, Van-Den and Monks, David W.}, year={2017}, month={Apr}, pages={281–290} } @article{chaudhari_jennings_monks_jordan_gunter_mcgowen_louws_2016, title={Critical Period for Weed Control in Grafted and Nongrafted Fresh Market Tomato}, volume={64}, ISSN={["1550-2759"]}, DOI={10.1614/ws-d-15-00049.1}, abstractNote={Field experiments were conducted to determine the critical period for weed control (CPWC) in nongrafted ‘Amelia’ and Amelia grafted onto ‘Maxifort’ tomato rootstock grown in plasticulture. The establishment treatments (EST) consisted of two seedlings each of common purslane, large crabgrass, and yellow nutsedge transplanted at 1, 2, 3, 4, 5, 6, and 12 wk after tomato transplanting (WAT) and remained until tomato harvest to simulate weeds emerging at different times. The removal treatments (REM) consisted of the same weeds transplanted on the day of tomato transplanting and removed at 2, 3, 4, 5, 6, 8, and 12 WAT to simulate weeds controlled at different times. The beginning and end of the CPWC, based on a 5% yield loss of marketable tomato, was determined by fitting log-logistic and Gompertz models to the relative yield data representing REM and EST, respectively. In both grafted and nongrafted tomato, plant aboveground dry biomass increased as establishment of weeds was delayed and tomato plant biomass decreased when removal of weeds was delayed. For a given time of weed removal and establishment, grafted tomato plants produced higher biomass than nongrafted. The delay in establishment and removal of weeds resulted in weed biomass decrease and increase of the same magnitude, respectively, regardless of transplant type. The predicted CPWC was from 2.2 to 4.5 WAT in grafted tomato and from 3.3 to 5.8 WAT in nongrafted tomato. The length (2.3 or 2.5 wk) of the CPWC in fresh market tomato was not affected by grafting; however, the CPWC management began and ended 1 wk earlier in grafted tomato than in nongrafted tomato.}, number={3}, journal={WEED SCIENCE}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and McGowen, Samuel J. and Louws, Frank J.}, year={2016}, pages={523–530} } @article{coleman_chaudhari_jennings_schultheis_meyers_monks_2016, title={Evaluation of Herbicide Timings for Palmer Amaranth Control in a Stale Seedbed Sweetpotato Production System}, volume={30}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00133.1}, abstractNote={Studies were conducted in a stale field production system in 2012 and 2013 to determine the effect of herbicide timing on Palmer amaranth control and ‘Covington’ sweetpotato yield and quality. Treatments consisted of flumioxazin at 72, 90, or 109 g ai ha−1applied 45 d before transplanting (DBT) or 1 DBT, or sequentially the same rate at 45 DBT followed by (fb) 1 DBT; flumioxazin 109 g ha−1applied 1 DBT fbS-metolachlor (800 g ai ha−1) at 0, 6 (± 1), or 10 d after treatment (DAT); flumioxazin at 72, 90, or 109 g ha−1plus clomazone (630 g ai ha−1) applied 45 DBT fbS-metolachlor (800 g ha−1) applied 10 DAT; and fomesafen alone at 280 g ai ha−1applied 45 DBT. Nontreated weed-free and weedy controls were included for comparison. Flumioxazin application time had a significant effect on Palmer amaranth control and sweetpotato yields, and the effect of flumioxazin rate was not significant. Treatments consisting of sequential application of flumioxazin 45 DBT fb 1 DBT or flumioxazin plus clomazone 45 DBT fbS-metolachlor 10 DAT provided the maximum Palmer amaranth control and sweetpotato yields (jumbo, No. 1, jumbo plus No. 1, marketable) among all treatments. Delayed flumioxazin application timings until 1 DBT allowed Palmer amaranth emergence on stale seedbeds and resulted only in 65, 62, 48, and 17% control at 14, 32, 68, and 109 DAT, respectively. POST transplantS-metolachlor applications following flumioxazin 1 DBT did not improve Palmer amaranth control, because the majority of Palmer amaranth emerged prior toS-metolachlor application. A control program consisting of flumioxazin 109 g ha−1plus clomazone 630 g ha−1at 45 DBT fbS-metolachlor 800 g ha−1at 0 to 10 DAT provides an effective herbicide program for Palmer amaranth control in stale seedbed production systems in North Carolina sweetpotato.}, number={3}, journal={WEED TECHNOLOGY}, author={Coleman, Lauren B. and Chaudhari, Sushila and Jennings, Katherine M. and Schultheis, Jonathan R. and Meyers, Stephen L. and Monks, David W.}, year={2016}, pages={725–732} } @article{meyers_jennings_schultheis_monks_2016, title={Evaluation of Wick-Applied Glyphosate for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato}, volume={30}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-16-00024.1}, abstractNote={Studies were conducted in 2007 and 2008 at Clinton, NC to determine the effect of glyphosate applied POST via a Dixie wick applicator on Palmer amaranth control and sweetpotato yield and quality. In 2007, treatments consisted of glyphosate wicked sequentially 6 and 8 wk after transplanting (WAP) and glyphosate wicked sequentially 6 and 8 WAP followed by (fb) rotary mowing 9 WAP. In 2008, treatments consisted of glyphosate wicked once 4 or 7 WAP, wicked sequentially 4 and 7 WAP, mowed once 4 WAP, and mowed 4 WAP fb wicking 7 WAP. In 2008, Palmer amaranth control 6 WAP varied by location and averaged 10 and 58% for plots wicked 4 WAP. Palmer amaranth contacted by the wicking apparatus were controlled, but weeds shorter than the wicking height escaped treatment. Palmer amaranth control 9 WAP was greater than 90% for all treatments wicked 7 WAP. Competition prior to and between glyphosate treatments contributed to large sweetpotato yield losses. Treatments consisting of glyphosate 7 or 8 WAP (in 2007 and 2008, respectively) frequently had greater no. 1 and marketable yields compared to the weedy control. However, jumbo, no. 1, and marketable yields for all glyphosate and mowing treatments were generally less than half the hand-weeded check. Cracked sweetpotato roots were observed in glyphosate treatments and percent cracking (by weight) in those plots ranged from 1 to 12% for no. 1 roots, and 1 to 6% for marketable roots. Findings from this research suggest wicking might be useful in a salvage scenario, but only after currently registered preemergence herbicides and between-row cultivation have failed to control Palmer amaranth and other weed species below the sweetpotato canopy.}, number={3}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Schultheis, Jonathan R. and Monks, David W.}, year={2016}, pages={765–772} } @article{barkley_chaudhari_jennings_schultheis_meyers_monks_2016, title={Fomesafen Programs for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato}, volume={30}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00150.1}, abstractNote={Studies were conducted in 2012 and 2013 to determine the effect of fomesafen based Palmer amaranth control program in ‘Covington' and ‘Evangeline' sweetpotato cultivars. Treatments consisted of fomesafen pretransplant alone at 0.20, 0.28, 0.36, 0.42, 0.56, and 0.84 kg ai ha−1or followed by (fb)S-metolachlor at 1.12 kg ai ha−10 to 7 d after transplanting (DAP), fomesafen at 0.28 kg ha−1fbS-metolachlor at 1.12 kg ha−114 DAP, flumioxazin pretransplant at 0.105 kg ai ha−1,S-metolachlor at 1.12 kg ha−10 to 7 DAP, clomazone at 0.63 kg ha−10 to 7 DAP, napropamide at 2.24 kg ha−10 to7 DAP, flumioxazin fbS-metolachlor 0 to 7 DAP, and flumioxazin fb clomazone fbS-metolachlor 14 DAP. Fomesafen pretransplant at 0.28 to 0.84 kg ha−1alone or followed byS-metolachlor at 1.12 kg ha−10 to 7 DAP provided 80 to 100% Palmer amaranth control without reduction of yield and significant (< 13%) injury in Covington and Evangeline sweetpotato. Flumioxazin alone or fbS-metolachlor and flumioxazin fb clomazone fbS-metolachlor provided Palmer amaranth control (≥ 95%) with little injury (≤ 5%) and similar yield to the weed-free check. Clomazone alone did not cause injury, but controlled only 24 to 32% of Palmer amaranth at 50 DAP, which resulted in reduced no. 1, marketable, and total sweetpotato yield. Napropamide provided inconsistent control of Palmer amaranth in both years; therefore jumbo and total sweetpotato yield was reduced as compared to the weed-free check in 2012. Palmer amaranth control, sweetpotato cultivar tolerance, and yield in treatments with fomesafen fbS-metolachlor were similar to flumioxazin fbS-metolachlor. In conclusion, a herbicide program consisting of pretransplant fomesafen (0.28 to 0.42 kg ha−1) fbS-metolachlor (1.12 kg ha−1) is a potential option to control Palmer amaranth without causing significant injury and yield reduction in sweetpotato.}, number={2}, journal={WEED TECHNOLOGY}, author={Barkley, Susan L. and Chaudhari, Sushila and Jennings, Katherine M. and Schultheis, Jonathan R. and Meyers, Stephen L. and Monks, David W.}, year={2016}, pages={506–515} } @article{inman_jordan_york_jennings_monks_everman_bollman_fowler_cole_soteres_et al._2016, title={Long-Term Management of Palmer Amaranth (Amaranthus palmeri) in Dicamba-Tolerant Cotton}, volume={64}, ISSN={["1550-2759"]}, DOI={10.1614/ws-d-15-00058.1}, abstractNote={Research was conducted from 2011 to 2014 to determine weed population dynamics and frequency of glyphosate-resistant (GR) Palmer amaranth with herbicide programs consisting of glyphosate, dicamba, and residual herbicides in dicamba-tolerant cotton. Five treatments were maintained in the same plots over the duration of the experiment: three sequential POST applications of glyphosate with or without pendimethalin plus diuron PRE; three sequential POST applications of glyphosate plus dicamba with and without the PRE herbicides; and a POST application of glyphosate plus dicamba plus acetochlor followed by one or two POST applications of glyphosate plus dicamba without PRE herbicides. Additional treatments included alternating years with three sequential POST applications of glyphosate only and glyphosate plus dicamba POST with and without PRE herbicides. The greatest population of Palmer amaranth was observed when glyphosate was the only POST herbicide throughout the experiment. Although diuron plus pendimethalin PRE in a program with only glyphosate POST improved control during the first 2 yr, these herbicides were ineffective by the final 2 yr on the basis of weed counts from soil cores. The lowest population of Palmer amaranth was observed when glyphosate plus dicamba were applied regardless of PRE herbicides or inclusion of acetochlor POST. Frequency of GR Palmer amaranth was 8% or less when the experiment was initiated. Frequency of GR Palmer amaranth varied by herbicide program during 2012 but was similar among all herbicide programs in 2013 and 2014. Similar frequency of GR Palmer amaranth across all treatments at the end of the experiment most likely resulted from pollen movement from Palmer amaranth treated with glyphosate only to any surviving female plants regardless of PRE or POST treatment. These data suggest that GR Palmer amaranth can be controlled by dicamba and that dicamba is an effective alternative mode of action to glyphosate in fields where GR Palmer amaranth exists.}, number={1}, journal={WEED SCIENCE}, author={Inman, M. D. and Jordan, D. L. and York, A. C. and Jennings, Katherine and Monks, D. W. and Everman, W. J. and Bollman, S. L. and Fowler, J. T. and Cole, R. M. and Soteres, J. K. and et al.}, year={2016}, pages={161–169} } @article{chaudhari_jennings_monks_jordan_gunter_basinger_louws_2016, title={Response of Eggplant (Solanum melongena) Grafted onto Tomato (Solanum lycopersicum) Rootstock to Herbicides}, volume={30}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00079.1}, abstractNote={Tomato rootstocks have been successfully used for eggplant production. However, the safety of herbicides registered in tomato has not been tested on grafted eggplant, which is a combination of tomato rootstock and eggplant scion. Greenhouse and field experiments were conducted to determine response of grafted eggplant on tomato rootstock to napropamide, metribuzin, halosulfuron, trifluralin,S-metolachlor, and fomesafen herbicides. In greenhouse experiments, herbicide treatments included pretransplantS-metolachlor (400 and 800 g ai ha−1), pre- or posttransplant metribuzin (140 and 280 g ai ha−1), and posttransplant halosulfuron (18 and 36 g ai ha−1). In field experiments, herbicide treatments included pretransplant fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 52 g ha−1), metribuzin (280 and 550 g ha−1), napropamide (1,120 and 2,240 g ai ha−1),S-metolachlor (800 and 1,060 g ha−1), and trifluralin (560 and 840 g ai ha−1). The eggplant cultivar ‘Santana' was used as the scion and nongrafted control, and two hybrid tomatoes ‘RST-04−106-T' and ‘Maxifort' were used as rootstocks for grafted plants. In both greenhouse and field experiments, there was no difference between grafted and nongrafted eggplant in terms of injury caused by herbicides. Metribuzin posttransplant at 140 and 280 g ha−1caused 94 and 100% injury to grafted and nongrafted eggplant 4 wk after treatment. In field experiments, pretransplant fomesafen, napropamide,S-metolachlor, and trifluralin caused less than 10% injury and no yield reduction in grafted and nongrafted eggplant. However, metribuzin caused injury and yield reduction in both grafted and nongrafted eggplant. Metribuzin at 550 g ha−1caused 60 and 81% plant stand loss in 2013 and 2014, respectively. Halosulfuron reduced yield 24% in both grafted and nongrafted eggplant compared to nontreated control in 2013 but did not reduce yield in 2014. The pretransplantS-metolachlor, napropamide, fomesafen, and trifluralin are safe to use on eggplant grafted onto tomato rootstock, and will be a valuable addition to the toolkit of eggplant growers.}, number={1}, journal={WEED TECHNOLOGY}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Basinger, Nicholas T. and Louws, Frank J.}, year={2016}, pages={207–216} } @article{coneybeer-roberts_jennings_monks_2016, title={Response of the Weed Maryland Meadowbeauty (Rhexia mariana L.) and Blueberry to Flumioxazin PRE}, volume={16}, ISSN={["1553-8362"]}, DOI={10.1080/15538362.2015.1108895}, abstractNote={ABSTRACT Field studies were conducted in 2007 and 2008 in North Carolina to determine the response of the weed Maryland meadowbeauty and blueberry to flumioxazin PRE (pre-emergence). No injury to non-bearing (blueberry plants not mature enough to produce fruit) or bearing (blueberry plants mature enough to produce fruit) blueberry from flumioxazin PRE was observed. In non-bearing blueberry, control of meadowbeauty was greater than 97% 90 DAT (days after treatment) with the registered rate of 0.42 kg ai ha–1 flumioxazin. Across two studies in bearing blueberry, a single application of flumioxazin at 0.42 kg ai ha–1 controlled meadowbeauty 79% to 92% 90 DAT. Flumioxazin at 0.21 kg ai ha–1 applied twice 60 d apart resulted in greater than 96% meadowbeauty control 90 d after the first application. Treatments of flumioxazin applied as a single application or two applications applied sequentially 60 d apart in bearing blueberry had yields ranging from 3150 to 6065 kg ha–1and 3551 to 5735 kg ha–1, respectively, and did not have a negative effect on blueberry yield regardless of application rate compared to the nontreated check.}, number={3}, journal={INTERNATIONAL JOURNAL OF FRUIT SCIENCE}, author={Coneybeer-Roberts, Meagan M. and Jennings, Katherine M. and Monks, David W.}, year={2016}, pages={301–309} } @article{meyers_jennings_monks_ballington_jordan_2016, title={Weed Control in Southern Highbush Blueberry with S-metolachlor, Flumioxazin, and Hexazinone}, volume={16}, ISSN={["1553-8362"]}, DOI={10.1080/15538362.2015.1072490}, abstractNote={Abstract Field studies were conducted in 2010, 2011, and 2012 at a commercial blueberry farm near Burgaw, NC to determine weed control and crop tolerance to S-metolachlor and flumioxazin alone or mixed with hexazinone. Herbicides were applied pre-budbreak and postharvest. Pre-budbreak applications consisted of hexazinone at 1.1 or 2.2 kg ai ha−1, S-metolachlor at 1.4 or 2.8 kg ai ha–1, and flumioxazin at 215 g ai ha–1 alone and tank mixes of hexazinone or flumioxazin plus S-metolachlor. Additional treatments consisted of flumioxazin (215 g ha–1), flumioxazin plus S-metolachlor (1.4 and 2.8 kg ha–1), or hexazinone (1.1 kg ha–1) plus S-metolachlor (1.4 and 2.8 kg ha–1) applied pre-budbreak and followed by (fb) a postharvest application of flumioxazin (215 g ha–1). Herbicide programs containing flumioxazin resulted in greater Maryland meadowbeauty control (73%) 5 to 6 weeks after treatment (WAT) than herbicide programs containing hexazinone at 1.1 or 2.2 kg ha–1 (37% and 39%, respectively). Needleleaf rosette grass control remained ≥94% for all herbicide programs through 2 WAT. Hexazinone at 1.1 kg ha–1 provided greater needleleaf rosette grass control (87%) than flumioxazin (71%) 5 to 6 WAT. Meadowbeauty and needleleaf rosette grass control by all herbicide programs was poor (≤39% and ≤57%, respectively) 16 to 18 WAT. Two weeks after post-harvest applications, herbicide programs receiving a post-harvest flumioxazin application had greater meadowbeauty and needleleaf rosette grass control (78% and 84%, respectively) than those programs without a post-harvest flumioxazin application (43% and 71%, respectively).}, number={2}, journal={INTERNATIONAL JOURNAL OF FRUIT SCIENCE}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W. and Ballington, James R. and Jordan, David L.}, year={2016}, pages={150–158} } @article{meyers_jennings_monks_mitchem_2015, title={Herbicide-Based Weed Management Programs in Erect, Thornless Blackberry}, volume={15}, ISSN={1553-8362 1553-8621}, url={http://dx.doi.org/10.1080/15538362.2015.1044694}, DOI={10.1080/15538362.2015.1044694}, abstractNote={Field studies were conducted in 2009/2010 and 2011 in North Carolina to determine the influence of herbicide-based weed management programs on weed control and blackberry tolerance. Treatments consisted of five programs with a late fall-early winter herbicide application followed by (fb) an early spring herbicide application: flumioxazin fb flumioxazin, simazine fb terbacil, terbacil fb oryzalin plus simazine, norflurazon fb oryzalin plus simazine, and terbacil fb S-metolachlor plus simazine. A sixth program consisted of winter-applied dichlobenil. Crop tolerance and weed control were recorded at the physiological crop stages of budbreak, flowering, and harvest.}, number={4}, journal={International Journal of Fruit Science}, publisher={Informa UK Limited}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W. and Mitchem, Wayne E.}, year={2015}, month={Aug}, pages={456–464} } @article{chaudhari_jennings_monks_jordan_gunter_louws_2015, title={Response of Grafted Tomato (Solanum lycopersicum) to Herbicides}, volume={29}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00037.1}, abstractNote={Tomato grafting has gained increased attention in the United States as an alternative to methyl bromide to control soilborne pests and diseases. Although several herbicides are registered in tomato production, a lack of information exists on the effect of herbicides on grafted tomato. Greenhouse and field experiments were conducted to determine herbicide tolerance of grafted tomato. In greenhouse experiments, halosulfuron (27, 54, and 108 g ai ha−1), metribuzin (280, 560, and 1,120 g ai ha−1), andS-metolachlor (1,070, 2,140, and 3,200 g ai ha−1) were applied posttransplant to nongrafted ‘Amelia' and Amelia scion grafted onto ‘Maxifort' or ‘RST-04-106-T' tomato rootstocks. Although herbicide injury was observed, no differences were observed in grafted and nongrafted tomato response including visible injury assessments, plant height, and fresh weight. Tomato injury at 3 wk after herbicide application increased from 3 to 12, 1 to 87, and 0 to 37% as rate of halosulfuron, metribuzin, andS-metolachlor increased, respectively. In field experiments under plasticulture, herbicides applied pretransplant included fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 54 g ha−1), metribuzin (280 and 560 g ha−1), napropamide (1,120 and 2,240 g ha−1),S-metolachlor (800 and 1,070 g ha−1), and trifluralin (560 and 840 g ai ha−1). Amelia was used as the scion and the nongrafted control. ‘Anchor-T', ‘Beaufort', or Maxifort tomato were used as rootstocks for grafted plants. Fomesafen, halosulfuron, napropamide, and trifluralin initially caused greater injury to grafted tomato than to nongrafted tomato regardless of rootstock (Anchor-T, Beaufort, or Maxifort). However, by 4 wk after treatment, all grafted and nongrafted plants had recovered from herbicide injury. A transplant type-by-herbicide interaction was not observed for yield, but grafted A-Maxifort tomato produced greater total and marketable yield than nongrafted Amelia tomato. Grafted tomato exhibited similar tolerance as nongrafted tomato for all herbicides applied post- and pretransplant.}, number={4}, journal={WEED TECHNOLOGY}, publisher={Cambridge University Press (CUP)}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Louws, Frank J.}, year={2015}, pages={800–809} } @article{meyers_jennings_monks_2014, title={'Covington' Sweetpotato Tolerance to Flumioxazin Applied POST-Directed}, volume={28}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-13-00092.1}, abstractNote={Field studies were conducted at Clinton, NC (2009, 2010), and Kinston, NC (2010), to determine ‘Covington' sweetpotato tolerance to flumioxazin applied after transplanting. Flumioxazin was directed to 25% of the sweetpotato vine beginning at the distal end (shoot tip), 25% of the vine beginning at the proximal end (crown), or to the entire vine (over-the-top) and was applied at 2 or 5 wk after transplanting (WAP). Applications made at 2 WAP resulted in 10 to 16% foliar necrosis at 3 WAP. Necrosis was transient and ≤ 2% by 6 WAP. Stunting injury at 6 WAP for flumioxazin applied at 2 WAP was greatest (12%) with the over-the-top application, followed by crown (5%), and shoot tip (1%) applications. Applications made at 5 WAP resulted in 35, 23, and 15% foliar necrosis at 6 WAP for over-the-top, crown, and shoot tip applications, respectively. By 12 WAP, stunting injury for all treatments was ≤ 3%. No. 1, jumbo, canner, and total marketable sweetpotato yield of the nontreated check was 36,670; 7,610; 7,170; and 51,450 kg ha−1, respectively. No. 1 and total marketable sweetpotato yields were reduced when flumioxazin was applied at 2 or 5 WAP. No. 1 sweetpotato yield was reduced when flumioxazin was applied to the crown or over-the-top (27,240 and 28,330 kg ha−1, respectively). Sweetpotato receiving flumioxazin applied to the shoot tip had similar no. 1 (31,770 kg ha−1) yields as the nontreated check, crown, and over-the-top applications. Total marketable sweetpotato yield was reduced by flumioxazin application to shoot tip, crown, and over-the-top (45,350; 40,100; 40,370 kg ha−1, respectively). Neither flumioxazin application timing nor placement influenced either jumbo- or canner-grade sweetpotato yields. Currently, after-transplant applications of flumioxazin do not appear to be a suitable fit for POST weed control in North Carolina sweetpotato production systems.}, number={1}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W.}, year={2014}, pages={163–167} } @article{pekarek_monks_jennings_hoyt_2013, title={Bell Pepper (Capsicum annuum) Tolerance to Imazosulfuron and Thifensulfuron-Methyl}, volume={27}, ISSN={["0890-037X"]}, DOI={10.1614/wt-d-12-00101.1}, abstractNote={Greenhouse and field studies were conducted to evaluate bell pepper tolerance to the sulfonylurea herbicides imazosulfuron and thifensulfuron-methyl. Imazosulfuron was applied at 56, 112, 224, 336, or 448 g ai ha−1. Thifensulfuron-methyl was applied at 2.6, 5.3, 10.5, 21.0, or 31.6 g ai ha−1. In the greenhouse over 2 yr, bell pepper injury due to imazosulfuron POST ranged from 12 to 27%. Reductions in plant height and numbers of nodes, buds, flowers, and fruits were generally minor or not observed. Injury from thifensulfuron-methyl POST ranged from 40 to 60% in the greenhouse. Similar trends were observed for leaf chlorosis and distortion. Thifensulfuron-methyl tended to decrease numbers of buds, flowers, and fruits in the greenhouse. In the field at three sites, bell pepper injury due to imazosulfuron applied POST-directed (POST-DIR) was less than 10% at all rating times, and height and yield were not affected. Total and marketable yield averaged 40,300 and 35,810 kg ha−1, respectively, across environments and years. Bell pepper injury from thifensulfuron-methyl applied POST-DIR in the field was less than 20% with all rates and less than 10% when rates less than 10.6 g ai ha−1 thifensulfuron-methyl were applied. Bell pepper stand (plants ha−1) or height was not affected by thifensulfuron-methyl. Thifensulfuron-methyl did not affect total bell pepper yield (39,310 kg ha−1 averaged across environments); however, reductions in Fancy grade yield were observed. No. 1 and cull yield grades tended to increase with increasing thifensulfuron-methyl rate, apparently compensating for lost Fancy yield.}, number={4}, journal={WEED TECHNOLOGY}, author={Pekarek, Ryan A. and Monks, David W. and Jennings, Katherine M. and Hoyt, Greg D.}, year={2013}, pages={741–746} } @article{meyers_jennings_monks_jordan_ballington_2013, title={Effect of PRE and POST Herbicides on Carolina Redroot (Lachnanthes caroliniana) Growth}, volume={27}, ISSN={["0890-037X"]}, DOI={10.1614/wt-d-13-00029.1}, abstractNote={Greenhouse studies were conducted in Raleigh, NC to determine Carolina redroot control by selected PRE and POST herbicides labeled for blueberries. Paraquat, glufosinate, glyphosate, and flumioxazin provided some Carolina redroot shoot control 7 d after POST application (DAPOST) ranging from 48 to 74%. Control 25 DAPOST was greatest for hexazinone at 2.2 kg ai ha−1(90%) followed by glufosinate with 56% control and paraquat and terbacil each with 53% control. Control for most treatments declined between 25 and 63 DAPOST with the exception of glyphosate, which increased to 64%. Carolina redroot shoots per pot were reduced by terbacil, hexazinone at 2.2 kg ha−1, and glyphosate compared with the nontreated check 63 DAPOST. Control of Carolina redroot roots and rhizomes 63 DAPOST ranged from 7 to 68%, with the greatest control provided by terbacil (68%) and hexazinone at 2.2 kg ha−1(64%). Terbacil and hexazinone at 2.2 kg ha−1were the only treatments that reduced both shoot and root/rhizome dry weight compared with the nontreated check.}, number={4}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Ballington, James R.}, year={2013}, pages={747–751} } @article{dittmar_monks_jennings_schultheis_2013, title={Effects of Halosulfuron POST on Sweetpotato Yield and Storage Root Quality}, volume={27}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-11-00175.1}, abstractNote={Field studies were conducted to determine the effect of halosulfuron at 0, 13, 26, 39 or 52 g ha−1 applied 10, 22, and 31 d after planting (DAP) on ‘Beauregard' and ‘Covington' sweetpotato. Storage roots were harvested, graded, cured, and stored in controlled environment for 2 mo. Where injury on storage roots was observed, external injury occurred on the surface of the storage root as a blackened area with blistering and internal injury consisted of small red-brown spots inside the sweetpotato storage root. Total yield of sweetpotato with 13 g ha−1 halosulfuron treatment (155,157 kg ha−1) was similar to the nontreated check (162,002 kg ha−1). However, halosulfuron rates above 13 g ha−1 resulted in a reduction of marketable grade roots and total yield of sweetpotato. Regardless of rate and timing of halosulfuron, external and internal injury to Beauregard storage roots was less than 6 and 9%, respectively. No external injury to Covington was observed from all rates of halosulfuron applied POST at 10 DAP. Halosulfuron at 22 DAP to Covington caused greater external injury to storage roots than was observed on the nontreated. Thus, Beauregard appears more tolerant to halosulfuron POST than Covington. To minimize internal or external injury to storage roots of Covington, halosulfuron must be applied within 10 DAP.}, number={1}, journal={WEED TECHNOLOGY}, author={Dittmar, Peter J. and Monks, David W. and Jennings, Katherine M. and Schultheis, Jonathan R.}, year={2013}, pages={113–116} } @article{meyers_jennings_monks_2013, title={Herbicide-Based Weed Management Programs for Palmer Amaranth (Amaranthus palmeri) in Sweetpotato}, volume={27}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-12-00036.1}, abstractNote={Studies were conducted in 2010 and 2011 to determine the effect of herbicide-based Palmer amaranth management systems in ‘Covington' sweetpotato. Treatments consisted of three herbicide application times. Pretransplant applications were flumioxazin at 107 g ai ha−1, fomesafen at 280 g ai ha−1, flumioxazin at 70 g ha−1plus pyroxasulfone at 89 g ai ha−1, or no herbicide. A second herbicide application was applied within 1 d after transplanting (DAP) and consisted ofS-metolachlor at 800 g ai ha−1, clomazone at 630 g ai ha−1, or no herbicide. Two weeks after planting (WAP) plots receivedS-metolachlor at 800 g ha−1, metribuzin at 140 g ai ha−1, a tank mix ofS-metolachlor at 800 g ha−1plus metribuzin at 140 g ha−1, hand-weeding followed by (fb)S-metolachlor at 800 g ha−1, or no herbicide. Crop tolerance, Palmer amaranth control, and sweetpotato yield in systems containing fomesafen pretransplant were similar to flumioxazin-containing systems. Systems containing flumioxazin plus pyroxasulfone pretransplant resulted in increased crop stunting and decreased sweetpotato yield in 2010, compared with systems containing flumioxazin or fomesafen, but were similar to systems with flumioxazin or fomesafen in 2011. In 2010, systems containingS-metolachlor applied within 1 DAP resulted in increased sweetpotato injury, similar Palmer amaranth control, and reduced no. 1, jumbo, and total sweetpotato yield, compared with systems with clomazone. In 2011, systems containing clomazone were more injurious to sweetpotato than systems receivingS-metolachlor, but Palmer amaranth control and sweetpotato yield were similar. Systems containing metribuzin 2 WAP resulted in increased sweetpotato injury and Palmer amaranth control (in 2010) but similar no. 1 and total sweetpotato yields, compared with systems containingS-metolachlor at 2 WAP. Hand-weeding fbS-metolachlor provided greater Palmer amaranth control and no. 1 sweetpotato yield than did systems ofS-metolachlor without a preceding hand-weeding event in 2010.}, number={2}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W.}, year={2013}, pages={331–340} } @article{garvey_meyers_monks_coble_2013, title={Influence of Palmer Amaranth (Amaranthus palmeri) on the Critical Period for Weed Control in Plasticulture-Grown Tomato}, volume={27}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-12-00028.1}, abstractNote={Field studies were conducted in 1996, 1997, and 1998 at Clinton, NC, to determine the influence of Palmer amaranth establishment and removal periods on the yield and quality of plasticulture-grown ‘Mountain Spring' fresh market tomato. Treatments consisted of 14 Palmer amaranth establishment and removal periods. Half of the treatments were weed removal treatments (REM), in which Palmer amaranth was sowed at the time tomato transplanting and allowed to remain in the field for 0 (weed-free all season), 2, 3, 4, 6, 8, or 10 wk after transplanting (WAT). The second set of the treatments, weed establishment treatments (EST), consisted of sowing Palmer amaranth 0 (weedy all season), 2, 3, 4, 6, 8, or 10 WAT and allowing it to grow in competition with tomato the remainder of the season. Tomato shoot dry weight was reduced 23, 7, and 11 g plant−1for each week Palmer amaranth removal was delayed from 0 to 10 WAT in 1996, 1997, and 1998, respectively. Marketable tomato yield ranged from 87,000 to 41,000 kg ha−1for REM of 0 to 10 WAT and 28,000 to 88,000 kg ha−1for EST of 0 to 6 WAT. Percentage of jumbo, large, medium, and cull tomato yields ranged from 49 to 33%, 22 to 31%, 2 to 6%, and 9 to 11%, respectively, for REM of 0 to 10 WAT and 30 to 49%, 38 to 22%, 3 to 2%, and 12 to 9%, respectively, for EST of 0 to 6 WAT. To avoid losses of marketable tomato yield and percentage of jumbo tomato fruit yield, tomato plots must remain free of Palmer amaranth between 3 and 6 WAT. Observed reduction in marketable tomato yield was likely due to competition for light as Palmer amaranth plants exceeded the tomato plant canopy 6 WAT and remained taller than tomato plants for the remainder of the growing season.}, number={1}, journal={WEED TECHNOLOGY}, author={Garvey, Paul V., Jr. and Meyers, Stephen L. and Monks, David W. and Coble, Harold D.}, year={2013}, pages={165–170} } @article{meyers_jennings_monks_ballington_jordan_2013, title={POST Control of Carolina Redroot (Lachnanthes caroliniana)}, volume={27}, ISSN={["0890-037X"]}, DOI={10.1614/wt-d-12-00164.1}, abstractNote={Greenhouse studies were conducted in 2012 in Raleigh, NC to determine Carolina redroot control by ten POST herbicides. Paraquat and glufosinate provided the greatest control 14 (73 and 64%, respectively) and 25 d (82 and 68%, respectively) after treatment (DAT), but control declined between 25 and 63 DAT (72 and 59%, respectively). Glyphosate provided minimal control 14 DAT (18%), and control increased from 14 to 25 DAT (46%) and 25 to 63 DAT (69%). Control of Carolina redroot roots and rhizomes (roots/rhizomes) was greatest in plants treated with paraquat (91%), glyphosate (88%), glufosinate (73%), hexazinone (62%), diuron (60%). Nontreated Carolina redroot shoot and root/rhizome dry weight were 8.3 and 7.6 g, respectively. Paraquat, glufosinate, glyphosate, and diuron reduced both shoot and root/rhizome dry weight (3.1 and 0.7 g, 5.1 and 2.7 g, 5.4 and 1.0, 5.7 and 1.6 g, respectively). Hexazinone reduced root/rhizome dry weight (2.7 g). Fomesafen reduced shoot dry weight (6.1 g), but did not reduce root/rhizome dry weight. Paraquat, glufosinate, glyphosate, hexazinone, diuron, and clopyralid treatments resulted in reduced incidence of Carolina redroot flowering and anthesis.}, number={3}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W. and Ballington, James R. and Jordan, David L.}, year={2013}, pages={534–537} } @article{meyers_jennings_monks_miller_shankle_2013, title={Rate and Application Timing Effects on Tolerance of Covington Sweetpotato to S-Metolachlor}, volume={27}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-13-00049.1}, abstractNote={Field studies were conducted in 2011 and 2012 at the Horticultural Crops Research Station near Clinton, NC, to determine ‘Covington' sweetpotato tolerance to S-metolachlor rate and application timing. Treatments were a factorial arrangement of four S-metolachlor rates (0, 1.1, 2.2, or 3.4 kg ai ha−1) and six application timings (0, 2, 5, 7, 9, or 14 d after transplanting [DAP]). Immediately following application, 1.9 cm of irrigation was applied to individual plots. Sweetpotato injury was minimal for all treatments (≤ 10%). No. 1 grade sweetpotato yield displayed a negative linear response to S-metolachlor rate, and decreased from 25,110 to 20,100 kg ha−1 as S-metolachlor rate increased from 0 to 3.4 kg ha−1. Conversely, no. 1 sweetpotato yield displayed a positive linear response to S-metolachlor application timing and increased from 19,670 to 27,090 kg ha−1 as timing progressed from 0 to 14 DAP. Total marketable sweetpotato yield displayed a quadratic response to both S-metolachlor application rate and timing. Total marketable yield decreased from 44,950 to 30,690 kg ha−1 as S-metolachlor rate increased from 0 to 3.4 kg ha−1. Total marketable yield increased from 37,800 to 45,780 kg ha−1 as application timing was delayed from 0 to 14 DAP. At 1.1 kg ha−1S-metolachlor, sweetpotato storage root length to width ratio displayed a quadratic relationship to application timing and increased from 1.87 to 2.23 for applications made 0 to 14 DAP. At 2.2 kg ha−1 of S-metolachlor, sweetpotato length to width ratio displayed a quadratic response to application timing, increased from 1.57 to 2.09 for 0 to 10 DAP, and decreased slightly from 2.09 to 2.03 for 10 to 14 DAP. Application timing did not influence length to width ratio of sweetpotato storage roots for those plots treated with S-metolachlor at either 0 or 3.4 kg ha−1.}, number={4}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Monks, David W. and Miller, Donnie K. and Shankle, Mark W.}, year={2013}, pages={729–734} } @article{dittmar_monks_jennings_booker_2012, title={Tolerance of Tomato to Herbicides Applied through Drip Irrigation}, volume={26}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-11-00181.1}, abstractNote={Greenhouse and field studies were conducted to determine tolerance of tomato to halosulfuron, imazosulfuron, and trifloxysulfuron herbicides applied through drip irrigation. In greenhouse studies, PRE- and POST-applied trifloxysulfuron caused greater tomato injury (14 and 54% injury, respectively) than PRE- and POST-applied halosulfuron (5 and 26% injury, respectively) or imazosulfuron (5 and 23% injury, respectively). All herbicide treatments in the greenhouse studies caused greater injury to tomato than the nontreated. Greater tomato injury was observed in the greenhouse from herbicides applied POST than when soil applied. Tomato injury from POST-applied halosulfuron, imazosulfuron, or trifloxysulfuron followed a linear relationship, with tomato injury increasing with increasing herbicide rate. Tomato photosynthetic rate did not differ among the herbicide treatments (32.7 to 55.0 μmol m−2s−1) and the nontreated (38.0 to 55.0 μmol m−2s−1). At 5 to 16 days after treatment (DAT), tomato treated with imazosulfuron POST (0.26 to 0.46 cm s−1) or trifloxysulfuron POST (0.27 to 0.51 cm s−1) had lower stomatal conductance compared to the stomatal conductance of the nontreated tomato (0.65 to 0.76 cm s−1). Chlorophyll content did not differ among treatments at 0 to 6 DAT. At 7 to 12 DAT, tomato treated with imazosulfuron POST (34.0 to 40.1 SPAD) and trifloxysulfuron POST (35.0 to 41.6 SPAD) had lower chlorophyll content compared to the nontreated (39.1 to 48.1 SPAD). In 2008 and 2009 field studies, no tomato injury was observed. Herbicide, herbicide application method, and herbicide rate had no effect on tomato height (73 to 77 cm 14 DAT, 79 to 84 cm 21 DAT) and total fruit yield (62,722 to 80,328 kg ha−1).}, number={4}, journal={WEED TECHNOLOGY}, author={Dittmar, Peter J. and Monks, David W. and Jennings, Katherine M. and Booker, Fitzgerald L.}, year={2012}, pages={684–690} } @article{meyers_jennings_schultheis_monks_2010, title={Evaluation of Flumioxazin and S-metolachlor Rate and Timing for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato}, volume={24}, ISSN={["0890-037X"]}, DOI={10.1614/wt-d-09-00057.1}, abstractNote={Studies were conducted in 2007 and 2008 to determine the effect of flumioxazin andS-metolachlor on Palmer amaranth control and ‘Beauregard’ and ‘Covington’ sweetpotato. Flumioxazin at 0, 91, or 109 g ai ha−1was applied pretransplant 2 d before transplanting alone or followed by (fb)S-metolachlor at 0, 0.8, 1.1, or 1.3 kg ai ha−1PRE applied immediately after transplanting or 2 wk after transplanting (WAP). Flumioxazin fbS-metolachlor immediately after transplanting provided greater than 90% season-long Palmer amaranth control.S-metolachlor applied alone immediately after transplanting provided 80 to 93% and 92 to 96% control in 2007 and 2008, respectively. Flumioxazin fbS-metolachlor 2 WAP provided greater than 90% control in 2007 but variable control (38 to 79%) in 2008.S-metolachlor applied alone 2 WAP did not provide acceptable Palmer amaranth control. Control was similar for all rates ofS-metolachlor (0.8, 1.1, and 1.3 kg ha−1). In 2008, greater Palmer amaranth control was observed with flumioxazin at 109 g ha−1than with 91 g ha−1. Sweetpotato crop injury due to treatment was minimal (< 3%), and sweetpotato storage root length to width ratio was similar for all treatments in 2007 (2.5 for Beauregard) and 2008 (2.4 and 1.9 for Beauregard and Covington, respectively). Sweetpotato yield was directly related to Palmer amaranth control. Results indicate that flumioxazin pretransplant fbS-metolachlor after transplanting provides an effective herbicide program for control of Palmer amaranth in sweetpotato.}, number={4}, journal={WEED TECHNOLOGY}, author={Meyers, Stephen L. and Jennings, Katherine M. and Schultheis, Jonathan R. and Monks, David W.}, year={2010}, pages={495–503} } @article{meyers_jennings_schultheis_monks_2010, title={Interference of Palmer Amaranth (Amaranthus palmeri) in Sweetpotato}, volume={58}, ISSN={["0043-1745"]}, DOI={10.1614/ws-d-09-00048.1}, abstractNote={Field studies were conducted in 2007 and 2008 at Clinton and Faison, NC, to evaluate the influence of Palmer amaranth density on ‘Beauregard’ and ‘Covington’ sweetpotato yield and quality and to quantify the influence of Palmer amaranth on light interception. Palmer amaranth was established at 0, 0.5, 1.1, 1.6, 3.3, and 6.5 plants m−1within the sweetpotato row and densities were maintained season-long. Jumbo, number (no.) 1, and marketable sweetpotato yield losses were fit to a rectangular hyperbola model, and predicted yield loss ranged from 56 to 94%, 30 to 85%, and 36 to 81%, respectively for Palmer amaranth densities of 0.5 to 6.5 plants m−1. Percentage of jumbo, no. 1, and marketable sweetpotato yield loss displayed a positive linear relationship with Palmer amaranth light interception as early as 6 to 7 wk after planting (R2= 0.99, 0.86, and 0.93, respectively). Predicted Palmer amaranth light interception 6 to 7, 10, and 13 to 14 wk after planting ranged from 47 to 68%, 46 to 82%, and 42 to 71%, respectively for Palmer amaranth densities of 0.5 to 6.5 plants m−1. Palmer amaranth height increased from 177 to 197 cm at densities of 0.5 to 4.1 plants m−1and decreased from 197 to 188 cm at densities of 4.1 to 6.5 plants m−1; plant width (69 to 145 cm) and shoot dry biomass plant−1(0.2 to 1.1 kg) decreased linearly as density increased.}, number={3}, journal={WEED SCIENCE}, author={Meyers, Stephen L. and Jennings, Katherine M. and Schultheis, Jonathan R. and Monks, David W.}, year={2010}, pages={199–203} } @article{dittmar_jennings_monks_2010, title={Response of Diploid Watermelon to Imazosulfuron POST}, volume={24}, ISSN={["1550-2740"]}, DOI={10.1614/wt-09-033.1}, abstractNote={Field trials were conducted to evaluate imazosulfuron applied POST at 0.1, 0.2, 0.3, and 0.4 kg/ha to watermelon at the two- to four-leaf stage or to vines 30.5 cm long. At 7 d after treatment (DAT), crop injury to watermelon increased linearly for both growth stages as rate increased. The least injury to watermelon observed 7 DAT was 19 and 15%, respectively, for the two- to four-leaf and 30.5-cm growth stages treated with 0.01 kg/ha imazosulfuron. The 0.4 kg/ha imazosulfuron treatment caused the greatest watermelon injury (approximately 30%) at both application timings. Yield of watermelon treated with 0.1 and 0.2 kg/ha imazosulfuron applied at the two- to four-leaf and 30.5-cm stages were similar to the nontreated check (all plots were maintained weed-free). For both application timings, yield decreased linearly as imazosulfuron rate increased. The application of imazosulfuron to watermelon at the 30.5-cm stage averaged across rates resulted in less injury at 15 DAT (16%) and greater yield (92,869 kg/ha) than watermelon treated at two- to four-leaf stage averaged across rates (29%, 83,560 kg/ha). Internal fruit quality was not affected by imazosulfuron.}, number={2}, journal={WEED TECHNOLOGY}, author={Dittmar, Peter J. and Jennings, Katherine M. and Monks, David W.}, year={2010}, pages={127–129} } @article{pekarek_garvey_monks_jennings_macrae_2010, title={Sulfentrazone Carryover to Vegetables and Cotton}, volume={24}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1614/wt-08-157.1}, DOI={10.1614/wt-08-157.1}, abstractNote={Sulfentrazone is commonly used for weed control in soybeans and tobacco, and vegetable crops and cotton are often rotated with soybeans and tobacco. Studies were conducted to evaluate the potential for sulfentrazone to carryover and injure several vegetable crops and cotton. Sulfentrazone was applied PRE to soybean at 0, 210, 420, and 840 g ai/ha before planting bell pepper, cabbage, cotton, cucumber, onion, snap bean, squash, sweet potato, tomato, and watermelon. Cotton, known to be susceptible to sulfentrazone carryover, was included as an indicator species. Cotton injury ranged from 14 to 18% with a 32% loss of yield in 1 of 2 yr when the labeled use rate of sulfentrazone (210 g/ha) was applied to the preceding crop. High use rates of sulfentrazone caused at least 50% injury with yield loss ranging from 36 to 100%. Bell pepper, snap bean, onion, tomato, and watermelon were injured < 18% by sulfentrazone at 840 g/ha. Squash was injured < 3% and < 36% by sulfentrazone at 210 and 840 g/ha, respectively. Yield of these crops was not affected regardless of sulfentrazone rate. Cabbage and cucumber were injured < 13% by sulfentrazone at 210 and 420 g/ha, and yields were not affected. Sulfentrazone at 840 g/ha injured cabbage up to 46% and reduced yield in 1 of 2 yr. Sulfentrazone injured cucumber up to 63% and reduced yield of No. 2 grade fruits. Sulfentrazone at 210 and 420 g/ha injured sweet potato < 6% and did not affect yield. Sulfentrazone at 840 g/ha injured sweet potato 14% and reduced total yield 26%. Our results suggest little to no adverse effect on bell pepper, cabbage, cucumber, onion, snap bean, squash, sweet potato, tomato, or watermelon from sulfentrazone applied at registered use rates during the preceding year.}, number={1}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Pekarek, Ryan A. and Garvey, Paul V. and Monks, David W. and Jennings, Katherine M. and Macrae, Andrew W.}, year={2010}, month={Mar}, pages={20–24} } @article{dittmar_monks_schultheis_2010, title={Use of Commercially Available Pollenizers for Optimizing Triploid Watermelon Production}, volume={45}, ISSN={["0018-5345"]}, DOI={10.21273/hortsci.45.4.541}, abstractNote={An experiment was conducted during 2005 and 2006 in Kinston, NC, with the objective of maximizing triploid watermelon [Citrullus lanatus (Thunb.) Matsum. and Nak.] fruit yield and quality by optimizing the choice and use of pollenizers. Treatments were pollenizer cultivars planted singly [‘Companion’, ‘Super Pollenizer 1’ (‘SP1’), ‘Summer Flavor 800’ (‘SF800’), and ‘Mickylee’] or in pairs (‘Companion’ + ‘SP1’, ‘Companion’ + ‘SF800’, and ‘SP1’ + ‘SF800’). All pollenizers from these seven treatments were interplanted with the triploid cultivar Tri-X-313. Planting arrangement was compared by establishing ‘SF800’ in a hill versus an interplanted field arrangement. Effect of pollenizer establishment timing on triploid fruit yields and quality was evaluated by establishing ‘SP1’ 3 weeks after planting and comparing it with the establishment of ‘SP1’ at the time of triploid plant establishment. Finally, a triploid planting with no pollenizer (control) was included to determine pollen movement. Fruit yield from the control was 22% or less of yield of the other treatments containing a pollenizer and less than 10% in the initial or early harvests. Pollen movement was minimal among plots and differences in yield and fruit quality could be attributed to pollenizer treatment. In 2005, the use of ‘Companion’, ‘SP1’, or ‘Mickylee’ as pollenizers produced similar total yields, whereas ‘SF800’ produced the lowest yield. In 2005, ‘Companion’ produced more large fruit than the other individual pollenizer treatments. Combining the pollenizers generally did not enhance triploid yields or quality. Interplanting of pollenizers consistently resulted in greater yield compared with the hill system. Late planting of ‘SP1’ increased the incidence of hollow heart in the marketable fruit and decreased yield compared with simultaneously planting ‘SP1’ and triploid plants. Thus, selection of pollenizer, planting arrangement, and time of pollenizer establishment are all important considerations to optimizing triploid yield and quality.}, number={4}, journal={HORTSCIENCE}, author={Dittmar, Peter J. and Monks, David W. and Schultheis, Jonathan R.}, year={2010}, month={Apr}, pages={541–545} } @article{dittmar_monks_schultheis_2009, title={Maximum Potential Vegetative and Floral Production and Fruit Characteristics of Watermelon Pollenizers}, volume={44}, ISSN={["2327-9834"]}, DOI={10.21273/hortsci.44.1.59}, abstractNote={Triploid (seedless) watermelon [Citrullus lanatus (Thunb.) Matsum. and Nak.] pollen is nonviable; thus, diploid (pollenizer) watermelon cultigens are required to supply viable pollen for triploid watermelon fruit set. The objective of this research was to characterize maximum potential vegetative growth, staminate and pistillate flower production over time, and measure exterior and interior fruit characteristics of pollenizer cultigens. Sixteen commercially available and numbered line (hereafter collectively referred to as cultigens) pollenizer and two triploid cultigens were evaluated in 2005 and 2006 at Clayton, NC. Vegetative growth was measured using vine and internode length, and staminate and pistillate flower development was counted weekly. Fruit quality and quantity were determined by measuring individual fruit weights, soluble solids, and rind thickness. Based on vegetative growth, pollenizer cultigens were placed into two distinct groups. Pollenizers, which produced a compact or dwarf plant were ‘Companion’, ‘Sidekick’, ‘TP91’, ‘TPS92’, and ‘WC5108-1216’. Pollenizers having a standard vine length were ‘Jenny’, ‘High Set 11’, ‘Mickylee’, ‘Minipol’, ‘Pinnacle’, ‘Summer Flavor 800’ (‘SF800’), ‘Super Pollenizer 1’ (‘SP1’), and ‘WH6818’. Cultigens with compact growth habit had shorter internodes and vine lengths compared with the cultigens with standard growth habit. Cultigens with the greatest quantity of staminate flower production through the entire season were ‘Sidekick’ and ‘SP1’. The lowest number of staminate flowers was produced by ‘TP91’ and ‘TPS92’. Based on fruit quality characteristics and production, pollenizers currently or possibly marketed for consumption include ‘Mickylee’, ‘SF800’, ‘Minipol’, ‘Jenny’, and ‘Pinnacle’. The remaining cultigens evaluated in this study should be used strictly as pollenizers based on fruit quality. Arrangement of diploid pollenizers in a commercial planting of triploid watermelons is an important consideration depending on plant vegetative development. Based on staminate flower production, cultigens with higher staminate flower production are potentially superior pollenizers and may lead to improved triploid quality and production. Furthermore, pollenizer selection by fruit characteristics should include a rind pattern easily distinguished from triploid fruit in the field.}, number={1}, journal={HORTSCIENCE}, author={Dittmar, Peter J. and Monks, David W. and Schultheis, Jonathan R.}, year={2009}, month={Feb}, pages={59–63} } @article{sydorovych_safley_welker_ferguson_monks_jennings_driver_louws_2008, title={Economic evaluation of methyl bromide alternatives for the production of tomatoes in North Carolina}, volume={18}, number={4}, journal={HortTechnology}, author={Sydorovych, O. and Safley, C. D. and Welker, R. M. and Ferguson, L. M. and Monks, D. W. and Jennings, K. and Driver, J. and Louws, F. J.}, year={2008}, pages={705–713} } @article{harrelson_hoyt_havlin_monks_2008, title={Effect of planting date and nitrogen fertilization rates on no-till pumpkins}, volume={43}, number={3}, journal={HortScience}, author={Harrelson, E. R. and Hoyt, G. D. and Havlin, J. L. and Monks, D. W.}, year={2008}, pages={857–861} } @article{dittmar_monks_schultheis_jennings_2008, title={Effects of Postemergence and Postemergence-Directed Halosulfuron on Triploid Watermelon (Citrullus Lanatus)}, volume={22}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1614/wt-07-056.1}, DOI={10.1614/WT-07-056.1}, abstractNote={Studies were conducted in 2006 at Clinton and Kinston, NC, to determine the influence of halosulfuron POST (over the crop plant) or POST-directed (to the crop) on growth and yield of transplanted ‘Precious Petite’ and ‘Tri-X-313’ triploid watermelon. Treatments included a nontreated control, 39 g/ha halosulfuron applied POST-directed to 25% of the plant (distal or proximal region), POST-directed to 50% of the plant (distal or proximal; Precious Petite only), and POST. Watermelon treated with halosulfuron displayed chlorotic leaves, shortened internodes, and increased stem splitting. Vines were longest in the nontreated control (Tri-X-313 = 146 cm, Precious Petite = 206 cm) but were shortest in the POST treatment (Tri-X-313 = 88 cm, Precious Petite = 77 cm). Halosulfuron POST to watermelon caused the greatest injury (Tri-X-313 = 64%, Precious Petite = 67%). Halosulfuron directed to 25 or 50% (distal or proximal) of the plant caused less injury than halosulfuron applied POST. Stem splitting was greatest when halosulfuron was applied to the proximal area of the stem compared with POST-directed distal or POST. Internode shortening was greatest in treatments where halosulfuron was applied to the distal region of the stem. However, Tri-X-313 in the POST-directed 25% distal treatment produced similar total and marketable fruit weight as the nontreated control at Clinton. Fruit number did not differ among treatments for either cultivar. At Kinston, Precious Petite nontreated control and POST-directed 25% distal end treatment had greater marketable fruit weight than the POST-directed 50% proximal and POST treatments. The current halosulfuron registration allows POST application between rows or PRE. Limiting halosulfuron contact to no more than 25% of the watermelon plant will likely improve crop tolerance.}, number={3}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Dittmar, Peter J. and Monks, David W. and Schultheis, Jonathan R. and Jennings, Katherine M.}, year={2008}, month={Sep}, pages={467–471} } @article{norsworthy_oliveira_jha_malik_buckelew_jennings_monks_2008, title={Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper}, volume={22}, ISSN={["1550-2740"]}, DOI={10.1614/WT-07-043.1}, abstractNote={Field experiments were conducted in 2004 and 2005 at Clemson, SC, and in 2004 at Clinton, NC, to quantify Palmer amaranth and large crabgrass growth and interference with plasticulture-grown bell pepper over multiple environments and develop models which can be used on a regional basis to effectively time removal of these weeds. Experiments at both locations consisted of an early and a late spring planting, with the crop and weeds planted alone and in combination. Daily maximum and minimum air temperatures were used to calculate growing degree days (GDD, base 10 C) accumulated following bell pepper transplanting and weed emergence. Linear and nonlinear empirical models were used to describe ht, canopy width, and biomass production as a function of accumulated GDD. Palmer amaranth reduced bell pepper fruit set as early as 6 wk after transplanting (WATP) (648 GDD), whereas large crabgrass did not significantly reduce fruit set until 8 WATP (864 GDD). Using the developed models and assuming Palmer amaranth and large crabgrass emergence on the day of bell pepper transplanting, Palmer amaranth was predicted to be the same ht as bell pepper at 287 GDD (20 cm tall) and large crabgrass the same ht as bell pepper at 580 GDD (34 cm tall). Nomenclature: Large crabgrass, Digitaria sanguinalis (L.) Scop. DIGSA, Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA, bell pepper, Capsicum annuum L. ‘Heritage’}, number={2}, journal={WEED TECHNOLOGY}, publisher={Cambridge University Press (CUP)}, author={Norsworthy, Jason K. and Oliveira, Marcos J. and Jha, Prashant and Malik, Mayank and Buckelew, Juliana K. and Jennings, Katherine M. and Monks, David W.}, year={2008}, pages={296–302} } @article{harrelson_hoyt_havlin_monks_2007, title={Effect of winter cover crop residue on no-till pumpkin yield}, volume={42}, number={7}, journal={HortScience}, author={Harrelson, E. R. and Hoyt, G. A. and Havlin, J. L. and Monks, D. W.}, year={2007}, pages={1568–1574} } @article{macrae_monks_batts_thorton_schultheis_2007, title={Sweetpotato tolerance to halosulfuron applied postemergence}, volume={21}, ISSN={["1550-2740"]}, DOI={10.1614/WT-060178.1}, abstractNote={Studies were conducted in 2003 and 2004 to determine the effect of application timing and halosulfuron rate on sweetpotato yield and quality. Halosulfuron was applied 1, 2, and 4 wks after transplanting (WAP) sweetpotato in 2003, and 2, 3, and 4 WAP in 2004. Treatments within each timing included halosulfuron at 13, 26, 39, 52, and 65 g ai/ha plus a weed-free control. Combined over year, site, cultivar and rate, halosulfuron applied at 1, 2, 3, and 4 WAP stunted sweetpotato 32, 15, 11, and 14%, respectively, rated 2 wks after treatment. The stunting observed with the 1 and 2 WAP timings caused a 17 and 10% reduction in yield of No. 1 roots, respectively, compared with the weed-free control. The 3 and 4 WAP timings of halosulfuron did not reduce yield of No. 1 roots. Total yield was reduced approximately 11% at the 1, 2, and 3 WAP application timings. Halosulfuron at 4 WAP did not reduce total yield. Combined over year, site, and cultivar, halosulfuron applied at 39 g/ha did not reduce the weight of No. 1 roots or total crop yield and thus could be an effective POST option for weed control in sweetpotato.}, number={4}, journal={WEED TECHNOLOGY}, author={MacRae, Andrew W. and Monks, David W. and Batts, Roger B. and Thorton, Allan C. and Schultheis, Jonathan R.}, year={2007}, pages={993–996} } @article{macrae_monks_batts_thornton_2007, title={Sweetpotato tolerance to thifensulfuron applied postemergence}, volume={21}, ISSN={["1550-2740"]}, DOI={10.1614/WT-06-179.1}, abstractNote={An experiment was conducted at two locations in 2003 and 2004 to determine the timing and rate of thifensulfuron that is safe to use on sweetpotato. Thifensulfuron was applied 1, 2, and 4 wk after transplanting (WAP) in 2003 and 4, 6, and 8 WAP in 2004. Within each timing, thifensulfuron treatments were 1.1, 2.1, 3.2, 4.3, and 8.5 g ai/ha plus a weed-free control. The 1 and 2 WAP timings of thifensulfuron reduced the yield of number 1 roots greater than 25%. The 4, 6, and 8 WAP timings had less than 15% reduction in yield, with the 6 WAP timing reducing number 1 roots and total yield 10% or less. When 4.3 g/ha of thifensulfuron was applied 4 WAP, total yield was reduced 13%. The 6 and 8 WAP timings had little yield reduction, with no rate response observed. Application of 4.3 g/ha of thifensulfuron at 6 WAP would allow for control of problematic weed species while limiting potential yield loss. Yield loss from a 4 WAP application of thifensulfuron may in fact be a delay in crop maturity that could be recovered if the sweetpotato harvest was delayed to allow for the optimal amount of number 1 grade roots to be produced.}, number={4}, journal={WEED TECHNOLOGY}, author={MacRae, Andrew W. and Monks, David W. and Batts, Roger B. and Thornton, Allan C.}, year={2007}, pages={928–931} } @article{macrae_mitchem_monks_parker_galloway_2007, title={Tree growth, fruit size, and yield response of mature peach to weed-free intervals}, volume={21}, ISSN={["1550-2740"]}, DOI={10.1614/WT-06-002.1}, abstractNote={An experiment was conducted at one location in 1999 and two locations in 2000 to determine the critical weed-free period for peach in North Carolina. The cultivars for the three locations were ‘Contender’, ‘Norman’, and ‘Summerprince’. Weed-free intervals of 0, 3, 6, 9, 12, and 15 wk after peach tree bloom were established. Paraquat at 1.1 kg ai/ha plus nonionic surfactant at 0.25% v/v was applied every 10 d, after treatments were initiated at peach bloom, to maintain weed-free plots. Large crabgrass, hairy vetch, and smooth crabgrass were the primary weeds in Contender. Horseweed, smooth crabgrass, and large crabgrass were the primary weeds in Norman. Bermudagrass, smooth pigweed, and common lambsquarters were the primary weeds in Summerprince. No differences in trunk cross-sectional area were observed between the weed-free periods. Maintaining the orchard floor weed-free for 12 wk after peach tree bloom resulted in the greatest fruit size (individual fruit weight and diameter), total yield, and fruit number.}, number={1}, journal={WEED TECHNOLOGY}, author={MacRae, Andrew W. and Mitchem, Wayne E. and Monks, David W. and Parker, Michael L. and Galloway, Roger K.}, year={2007}, pages={102–105} } @article{buckelew_monks_jennings_hoyt_walls_2006, title={Eastern black nightshade (Solanum ptycanthum) reproduction and interference in transplanted plasticulture tomato}, volume={54}, ISSN={["1550-2759"]}, DOI={10.1614/WS-05-060R.1}, abstractNote={Abstract Studies were conducted to determine the effect of in-row eastern black nightshade establishment and removal timings in plasticulture tomato on tomato yield loss and nightshade berry production and seed viability. Eastern black nightshade was transplanted at 1, 2, 3, 4, 5, 6, and 12 wk after tomato planting (WAP) and remained until tomato harvest, or was established at tomato planting and removed at 2, 3, 4, 5, 6, 8, and 12 WAP to determine the critical weed-free periods. Eastern black nightshade seed viability increased with berry size and with length of establishment or removal time. The critical weed-free period to avoid viable nightshade seed production was 3–6 WAP. Tomato yield decreased with early weed establishment or with delayed time of weed removal. The critical weed-free period to avoid greater than 20% tomato yield loss for the sum weight of extra large and jumbo grades was 28 to 50 d after tomato transplanting. Nomenclature: Eastern black nightshade, Solanum ptycanthum Dun. SOLPT; tomato, Lycopersicon esculentum.}, number={3}, journal={WEED SCIENCE}, publisher={Cambridge University Press (CUP)}, author={Buckelew, Juliana K. and Monks, David W. and Jennings, Katherine M. and Hoyt, Greg D. and Walls, Robert F., Jr.}, year={2006}, pages={490–495} } @article{buckelew_monks_2006, title={Effect of eastern black nightshade (Solanum ptycanthum) on transplanted plasticulture tomato grade and yield}, volume={54}, ISSN={["1550-2759"]}, DOI={10.1614/WS-05-037R.1}, abstractNote={Abstract Field experiments were conducted to determine density-dependent effects of eastern black nightshade season-long interference on tomato-yield loss when growing in-row with staked plasticulture tomato. Eastern black nightshade was transplanted at densities of zero, one, two, three, four, or five plants per crop plant hole in the plastic. Eastern black nightshade densities of one to five reduced the number and weight of larger fruit grades (threes, extra larges, jumbos, marketables, totals) similarly but did not reduce yields of smaller fruit grades (culls, mediums, and larges) from the weed-free. Eastern black nightshade reduced percent yield loss of jumbo grade, the premium grade, which could be predicted by a rectangular hyperbola model. The value ($ ha−1) of jumbo fruit and the value of the sum of large, extra large, and jumbo grade was reduced at densities of eastern black nightshade as low as one plant per hole. Nomenclature: Eastern black nightshade, Solanum ptycanthum (Dun.) SOLPT; tomato, Lycopersicon esculentum L.}, number={3}, journal={WEED SCIENCE}, author={Buckelew, Juliana K. and Monks, David W.}, year={2006}, pages={504–508} } @article{gardner_york_jordan_monks_2006, title={Glufosinate antagonizes postemergence graminicides applied to annual grasses and johnsongrass}, volume={10}, ISBN={1524-3303}, number={4}, journal={Journal of Cotton Science (Online)}, author={Gardner, A. P. and York, A. C. and Jordan, D. L. and Monks, D. W.}, year={2006}, pages={319} } @article{gardner_york_jordan_monks_2006, title={Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton}, volume={10}, ISBN={1524-3303}, number={4}, journal={Journal of Cotton Science (Online)}, author={Gardner, A. P. and York, A. C. and Jordan, D. L. and Monks, D. W.}, year={2006}, pages={328} } @article{starke_monks_mitchem_macrae_2006, title={Response of five summer-squash (Cucurbita pepo) cultivars to halosulfuron}, volume={20}, ISSN={["0890-037X"]}, DOI={10.1614/WT-03-144R3.1}, abstractNote={Response of ‘Dixie’, ‘Lemondrop’, ‘Multipik’, ‘Superpik’, and ‘Seneca Prolific’ summer squash to halosulfuron PRE or POST at 0.036, 0.053, and 0.072 kg ai/ha, or halosulfuron PRE fb halosulfuron POST at 0.018 fb 0.018, 0.027 fb 0.027, and 0.036 fb 0.036 kg/ha was field evaluated in 1997 and 1998. All halosulfuron treatments and rates reduced the height of cultivars 17–19% at 6 WAP (weeks after planting) and summer-squash injury (chlorosis and necrosis of crop foliage) was 6, 14, and 11% from halosulfuron PRE, POST, and PRE fb POST, respectively. Early summer-squash flowering was reduced 32–82% by halosulfuron, resulting in reduced early yields. Dixie was the cultivar most tolerant to halosulfuron. Early flowering of Dixie was reduced 32–36% compared to 32–82% for the other cultivars. Marketable yield of summer squash was reduced 20–30% by all rates of halosulfuron when averaged over all application timings. Marketable yield of Seneca Prolific, Superpik, Dixie, Multipik, and Lemondrop was reduced 0–17% by halosulfuron PRE. Halosulfuron POST or PRE fb POST reduced marketable yield of all summer-squash cultivars by 25–46%. Thus, summer squash was not tolerant of POST halosulfuron; however, Dixie, Multipik, Seneca Prolific, and Superpik exhibited tolerance to halosulfuron PRE.}, number={3}, journal={WEED TECHNOLOGY}, author={Starke, Keith D. and Monks, David W. and Mitchem, Wayne E. and Macrae, Andrew W.}, year={2006}, pages={617–621} } @article{silvey_mitchem_macrae_monks_2006, title={Snap bean (Phaseolus vulgaris) tolerance to halosulfuron PRE, POST, or PRE followed by POST}, volume={20}, ISSN={["0890-037X"]}, DOI={10.1614/WT-05-046.1}, abstractNote={A field experiment was conducted in 1996 and 1997 to determine snap bean tolerance to halosulfuron based on crop injury, height, and yield. Halosulfuron was applied preemergence (PRE), postemergence (POST), and sequentially PRE followed by (fb) POST at 35, 53, and 70 g ai/ha, respectively. For comparison, a hand-weeded check was included. When data were averaged across years and halosulfuron rates, halosulfuron PRE, POST, and PRE fb POST provided similar yellow nutsedge control (74 to 82%) at snap bean harvest. Halosulfuron PRE resulted in 4% snap bean injury at harvest. Similarly, halosulfuron PRE fb POST resulted in 5% injury, while halosulfuron POST caused the most damage at 8%. Snap bean height at harvest was reduced 14% with halosulfuron POST compared to the weed-free check, with only 5 and 6% reduction caused by halosulfuron PRE and PRE fb POST, respectively. Halosulfuron POST reduced yield 39% compared to the weed-free check, while the PRE and PRE fb POST application timings produced yield similar to the check. When averaged across years and halosulfuron application timings, an increase in halosulfuron rate had no effect on yellow nutsedge control or snap bean yield. A linear trend was found for snap bean injury and plant height at harvest with snap bean injury increasing with an increase in halosulfuron rate while snap bean plant height decreased with an increase in halosulfuron rate. Application of halosulfuron PRE is the safest means to control yellow nutsedge in snap bean in North Carolina.}, number={4}, journal={WEED TECHNOLOGY}, author={Silvey, Brandy D. and Mitchem, Wayne E. and Macrae, Andrew W. and Monks, David W.}, year={2006}, pages={873–876} } @article{reberg-horton_burton_danehower_ma_monks_murphy_ranells_williamson_creamer_2005, title={Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.)}, volume={31}, ISSN={["1573-1561"]}, DOI={10.1007/s10886-005-0983-3}, abstractNote={Published studies focused on characterizing the allelopathy-based weed suppression by rye cover crop mulch have provided varying and inconsistent estimates of weed suppression. Studies were initiated to examine several factors that could influence the weed suppressiveness of rye: kill date, cultivar, and soil fertility. Ten cultivars of rye were planted with four rates of nitrogen fertilization, and tissue from each of these treatment combinations was harvested three times during the growing season. Concentrations of a known rye allelochemical DIBOA (2,4-dihydroxy-1,4-(2H)benzoxazine-3-one) were quantified from the harvested rye tissue using high performance liquid chromatography (HPLC). Phytotoxicity observed from aqueous extracts of the harvested rye tissue correlated with the levels of DIBOA recovered in harvested tissue. The amount of DIBOA in rye tissue varied depending on harvest date and rye cultivar, but was generally lower with all cultivars when rye was harvested later in the season. However, the late maturing variety 'Wheeler' retained greater concentrations of DIBOA in comparison to other rye cultivars when harvested later in the season. The decline in DIBOA concentrations as rye matures, and the fact that many rye cultivars mature at different rates may help explain why estimates of weed suppression from allelopathic agents in rye have varied so widely in the literature.}, number={1}, journal={JOURNAL OF CHEMICAL ECOLOGY}, publisher={Springer Nature}, author={Reberg-Horton, SC and Burton, JD and Danehower, DA and Ma, GY and Monks, DW and Murphy, JP and Ranells, NN and Williamson, JD and Creamer, NG}, year={2005}, month={Jan}, pages={179–193} } @article{lancaster_jordan_york_burke_corbin_sheldon_wilcut_monks_2005, title={Influence of selected fungicides on efficacy of clethodim and sethoxydim}, volume={19}, ISSN={["1550-2740"]}, DOI={10.1614/WT-04-172R}, abstractNote={Field experiments were conducted to compare large crabgrass control by clethodim or sethoxydim applied alone and with selected fungicides registered for use in peanut. Fluazinam, propiconazole plus trifloxystrobin, or tebuconazole did not affect efficacy of clethodim or sethoxydim. Azoxystrobin, boscalid, chlorothalonil, and pyraclostrobin reduced efficacy of clethodim and sethoxydim in some experiments. Increasing the herbicide rate increased large crabgrass control regardless of the addition of chlorothalonil. In laboratory experiments,14C absorption was less when14C-clethodim or14C-sethoxydim was applied with chlorothalonil. Pyraclostrobin and tebuconazole did not affect absorption of14C-clethodim or14C-sethoxydim.}, number={2}, journal={WEED TECHNOLOGY}, author={Lancaster, SH and Jordan, DL and York, AC and Burke, IC and Corbin, FT and Sheldon, YS and Wilcut, JW and Monks, DW}, year={2005}, pages={397–403} } @article{lancaster_jordan_york_wilcut_monks_brandenburg_2005, title={Interactions of clethodim and sethoxydim with selected agrichemicals applied to peanut}, volume={19}, ISSN={["1550-2740"]}, DOI={10.1614/WT-04-232R}, abstractNote={Experiments were conducted in North Carolina during 2002 and 2003 to evaluate broadleaf signalgrass and large crabgrass control by clethodim and sethoxydim applied in two-, three-, or four-way mixtures with fungicides, insecticides, and foliar fertilizer–plant growth regulator treatments. Broadleaf signalgrass and large crabgrass control by clethodim and sethoxydim was not reduced by the insecticides esfenvalerate, indoxacarb, or lambda-cyhalothrin. The fungicides azoxystrobin, chlorothalonil, pyraclostrobin, and tebuconazole reduced large crabgrass control by clethodim or sethoxydim in one or more of three experiments for each herbicide. Disodium octaborate and the plant growth regulator prohexadione calcium plus urea ammonium nitrate (UAN) mixed with clethodim and fungicides improved large crabgrass control in some experiments. In contrast, prohexadione calcium plus UAN and disodium octaborate did not affect broadleaf signalgrass or large crabgrass control by sethoxydim.}, number={2}, journal={WEED TECHNOLOGY}, author={Lancaster, SH and Jordan, DL and York, AC and Wilcut, JW and Monks, DW and Brandenburg, RL}, year={2005}, pages={456–461} } @article{lancaster_jordan_york_wilcut_brandenburg_monks_2005, title={Interactions of late-season morningglory (Ipomoea spp.) management practices in peanut (Arachis hypogaea)}, volume={19}, ISSN={["1550-2740"]}, DOI={10.1614/WT-04-229R.1}, abstractNote={Experiments were conducted in North Carolina during 2002 and 2003 to evaluate entireleaf morningglory control by 2,4-DB applied alone or with seven fungicides. In a separate group of experiments, tall morningglory control by 2,4-DB was evaluated when applied in four-way mixtures with the following: the fungicides azoxystrobin, chlorothalonil, pyraclostrobin, or tebuconazole; the insecticide lambda-cyhalothrin; and the foliar fertilizer disodium octaborate or the plant growth regulator (PGR) prohexadione calcium plus urea ammonium nitrate. Pyraclostrobin, but not azoxystrobin, boscalid, chlorothalonil, fluazinam, propiconazole plus trifloxystrobin, or tebuconazole, reduced entireleaf morningglory control by 2,4-DB. Mixtures of fungicides, insecticides, and foliar fertilizer/ PGR did not affect tall morningglory control by 2,4-DB. Placing artificial morningglory in the peanut canopy when fungicides were applied did not intercept enough fungicide to increase peanut defoliation by early leaf spot and web blotch or reduce pod yield compared with fungicide applied without artificial morningglory. Nomenclature: 2,4-DB; azoxystrobin; boscalid; chlorothalonil; fluazinam; lambda-cyhalothrin; prohexadione calcium; propiconazole; pyraclostrobin; tebuconazole; trifloxystrobin; entireleaf morningglory, Ipomoea hederacaea var integriuscula Gray #3 IPOHG; tall morningglory, Ipomoea purpurea (L.) Roth # PHBPU; early leaf spot, Cercospora arachidicola S. Hori; web blotch, Phoma arachidicola (Marsas et al.); peanut, Arachis hypogaea L. ‘NC-V 11’, ‘VA 98R’. Additional index words: Fungicide deposition, pesticide interactions, weed interference. Abbreviations: PGR, plant growth regulator; UAN, urea ammonium nitrate.}, number={4}, journal={WEED TECHNOLOGY}, author={Lancaster, SH and Jordan, DL and York, AC and Wilcut, JW and Brandenburg, RL and Monks, DW}, year={2005}, pages={803–808} } @article{lancaster_jordan_spears_york_wilcut_monks_batts_brandenburg_2005, title={Sicklepod (Senna obtusifolia) control and seed production after 2,4-DB applied alone and with fungicides or insecticides}, volume={19}, ISSN={["1550-2740"]}, DOI={10.1614/WT-04-227R}, abstractNote={Experiments were conducted during 1999, 2002, and 2003 to evaluate sicklepod control by 2,4-DB applied alone or in mixture with selected fungicides and insecticides registered for use in peanut. The fungicides boscalid, chlorothalonil, fluazinam, propiconazole plus trifloxystrobin, pyraclostrobin, or tebuconazole and the insecticides acephate, carbaryl, esfenvalerate, fenpropathrin, lambda-cyhalothrin, methomyl, or indoxacarb applied in mixtures with 2,4-DB did not reduce sicklepod control by 2,4-DB compared with 2,4-DB alone. The fungicide azoxystrobin reduced control in some but not all experiments. Sicklepod control was highest when 2,4-DB was applied before flowering regardless of fungicide treatment. Seed production and germination were reduced when 2,4-DB was applied 81 to 85 d after emergence when sicklepod was flowering. Applying 2,4-DB before flowering and at pod set and pod fill did not affect seed production.}, number={2}, journal={WEED TECHNOLOGY}, author={Lancaster, SH and Jordan, DL and Spears, JE and York, AC and Wilcut, JW and Monks, DW and Batts, RB and Brandenburg, RL}, year={2005}, pages={451–455} } @article{macrae_mitchem_monks_parker_2005, title={White clover (Trifolium repens) control and flower head suppression in apple orchards}, volume={19}, ISSN={["1550-2740"]}, DOI={10.1614/WT-02-024}, abstractNote={White clover is a weed in apple orchards that competes with the crop; also, flowers of this weed are unwanted attractants of honey bees at times when insecticides, which are harmful to these pollinators, are being applied. In 1997 and 1998, white clover flower head and plant control by clopyralid alone and with 2,4-D and apple tolerance to these herbicides were determined. Treatments consisted of clopyralid at 0.10 and 0.21 kg ae/ha, 2,4-D at 1.1 kg ae/ha, and 2,4-D at 1.1 kg ae/ha plus 0.03 or 0.05 kg ae/ha clopyralid, which were applied 2 wk before full apple bloom and 2 wk after full apple bloom, and a nontreated check. No crop injury occurred with any treatment. All herbicide treatments provided some white clover control and flower head suppression. No differences in white clover bloom reduction were observed through May among treatments containing clopyralid. As summer progressed, the effect of clopyralid rate became more apparent. Clopyralid at 0.21, regardless of application time, provided 99% vegetative control and 100% flower head reduction through July. Clopyralid plus 2,4-D controlled white clover better than 2,4-D alone. However, vegetative control and flower head reduction with clopyralid at reduced rates (0.03 or 0.05 kg ae/ha) plus 2,4-D were not acceptable (76% or less and 78% or less, respectively). Thus, clopyralid at 0.10 and 0.21 kg ae/ha will be necessary for acceptable white clover vegetation control and flower head reduction.}, number={2}, journal={WEED TECHNOLOGY}, author={MacRae, AW and Mitchem, WE and Monks, DW and Parker, ML}, year={2005}, pages={219–223} } @article{sanders_monks_bilderback_boyette_2004, title={Competency based training program in horticulture for County Extension Agents in North Carolina}, ISBN={["90-6605-125-6"]}, ISSN={["0567-7572"]}, DOI={10.17660/actahortic.2004.641.17}, number={641}, journal={KNOWLEDGE BUSINESS: HORTICULTURE EDUCATION AND KNOWLEDGE TRANSFER}, publisher={Leuven, Belgium : International Society for Horticultural Science}, author={Sanders, DC and Monks, DW and Bilderback, TE and Boyette, MD}, year={2004}, pages={131–134} } @article{seem_creamer_monks_2003, title={Critical weed-free period for 'Beauregard' sweetpotato (Ipomoea batatas)}, volume={17}, ISSN={["1550-2740"]}, DOI={10.1614/WT02-089}, abstractNote={Studies were initiated at two different planting dates and conducted at two different locations in 2001 to determine the critical weed-free period for certain populations of weeds in organically produced ‘Beauregard’ sweetpotato. Naturally occurring weed populations were used, and they included sicklepod, redroot pigweed, and yellow nutsedge. Treatments included allowing weeds to grow for 2, 4, 6, or 8 wk after transplanting (WAT) sweetpotato before weed removal and maintaining the sweetpotato weed-free for 2, 4, 6, or 8 WAT. Weedy and weed-free checks were also included in the study. These treatments were used to determine the length of time weeds can compete with sweetpotato without reducing yield and the length of time sweetpotato must grow before yield is no longer affected by newly emerging weeds. Yield of number one grade sweetpotato roots best fit a quadratic plateau curve for the grow-back treatments and a logistic curve for the removal treatments. Yields in weed-free plots of sweetpotato were higher at the early planting date, whereas yields in plots of weedy sweetpotato were higher at the late planting date. Weed biomass was lower in the grow-back treatments at the late planting date. Data indicate that sweetpotato may gain a competitive advantage over weeds when planted at a later date. At both planting dates, a critical weed-free period of 2 to 6 WAT was observed. Nomenclature: Redroot pigweed, Amaranthus retroflexus L. #3 AMARE; sicklepod, Senna obtusifolia (L.) Irwin and Barneby # CASOB; yellow nutsedge, Cyperus esculentus L. # CYPES; sweetpotato, Ipomoea batatas (L.) Lam. ‘Beauregard’. Additional index words: Competition, interference, organic production, Brachiaria platyphylla, Eleusine indica, Mollugo verticillata, Sida spinosa, BRAPP, ELEIN, MOLVE, SIDSP. Abbreviations: WAT, weeks after transplanting.}, number={4}, journal={WEED TECHNOLOGY}, author={Seem, JE and Creamer, NG and Monks, DW}, year={2003}, pages={686–695} } @article{wilson_monks_hines_mills_2001, title={Responses of potato (Solanum tuberosum), tomato (Lycopersicon esculentum), and several weeds to ASC-67040 herbicide}, volume={15}, ISSN={["0890-037X"]}, DOI={10.1614/0890-037X(2001)015[0271:ROPSTT]2.0.CO;2}, abstractNote={Abstract: The experimental sulfonylurea herbicide ASC-67040 was evaluated preemergence (PRE) and postemergence (POST) at 25 to 100 g ai/ha and PRE at 50 g/ha followed by ASC-67040 POST at 50 g/ha for broadleaf weed control in potato and tomato. In Virginia, ASC-67040 POST at 50 and 100 g/ha gave 70 to 98% control of common lambsquarters, common ragweed, and jimsonweed with slight (0 to 6%) ‘Superior’ potato and moderate (0 to 23%) ‘Agriset’ tomato injury. This crop injury was present primarily as chlorosis in terminal growth and disappeared by 3 wk after treatment (WAT). Potato tuber and tomato fruit yields were high in ASC-67040-treated plots. In North Carolina, ASC-67040 PRE and POST at 50 and 100 g/ha controlled 10 species of annual broadleaf weeds and grasses, and at 25 g/ha ASC-67040 gave greater than 90% control of most species. ASC-67040 injured ‘Fontenot’ potato more than Superior and caused 10 to 13% injury to ‘Mountain Spring’ tomato but did not injure ‘Mountain Pride’ tomato. Mountain Spring tomato recovered rapidly and produced high yields. In the greenhouse, yellow nutsedge control by ASC-67040 POST at 25 to 100 g/ha was 59 to 86% 3 WAT and yellow nutsedge height, dry weight, and regrowth dry weight were reduced by all rates. Lower rates of ASC-67040 might control weeds and cause less injury to potato and tomato. Nomenclature: ASC-67040 (proposed name fluazasulfuron), 1-(4,6-dimethoxypyrimidin-2-yl)-3-[3-trifluoromethyl-pyridin-2-yl)sulfonyl]urea; metolachlor; metribuzin; trifluralin; common lambsquarters, Chenopodium album L. #3 CHEAL; common ragweed, Ambrosia artemisiifolia L. # AMBEL; jimsonweed, Datura stramonium L. # DATST; yellow nutsedge, Cyperus esulentus L. # CYPES; potato, Solanum tuberosum L. ‘Fontenot’, ‘Superior’; tomato, Lycopersicum esculentus L. ‘Agriset’, ‘Mountain Pride’, ‘Mountain Spring’. Additional index words: Metolachlor, metribuzin, trifluralin, Ambrosia artemisiifolia, Cyperus esculentus, Datura stramonium, AMBEL, CHEAL, CYPES, DATST. Abbreviations: ALS, acetolactate synthase (EC 4.1.3.18); DAP, days after planting; DATP, days after transplanting; DAT, days after treatment; fb, followed by; POST, postemergence; PPI, preplant incorporated; PRE, preemergence in potato and pretransplant surface applied in tomato; WAT, weeks after treatment.}, number={2}, journal={WEED TECHNOLOGY}, author={Wilson, HP and Monks, DW and Hines, TE and Mills, RJ}, year={2001}, pages={271–276} } @article{bonte_villordon_schultheis_monks_2000, title={Black polyethylene tunnel covers affect plant production and quality of sweetpotato transplants}, volume={35}, ISSN={["0018-5345"]}, DOI={10.21273/hortsci.35.2.202}, abstractNote={The influence of a black polyethylene tunnel cover (BTC) was evaluated for its effect on quantity and quality of sweetpotato [Ipomoea batatas (L.) Lam.] transplants in plant beds in Louisiana and North Carolina. Use of BTC increased production of `Beauregard' transplants from 63% to 553% in comparison with the bare ground control. `Jewel' was less responsive; BTC treatments increased transplant production by at least 48% in Louisiana over the bare ground control, but no increase was observed in North Carolina. Individual transplant weight was at least 34% less in BTC treatments than in the control. The first harvest of cuttings in BTC beds was at least 14 days prior to that in control beds. Transplant quality was assessed as yield of storage roots in repeated trials that extended throughout the normal growing season. Yield of storage roots was not affected by BTC in early season plantings, but was frequently lower for BTC treatment transplants in middle and late season plantings. We therefore do not recommend this method as a means of increasing sweetpotato plant production from bedded roots.}, number={2}, journal={HORTSCIENCE}, author={Bonte, La and Villordon, AQ and Schultheis, JR and Monks, DW}, year={2000}, month={Apr}, pages={202–204} } @article{galloway_monks_schultheis_2000, title={Effect of herbicides on pepper (Capsicum annuum) stand establishment and yield from transplants produced using various irrigation systems}, volume={14}, ISSN={["0890-037X"]}, DOI={10.1614/0890-037x(2000)014[0241:eohopc]2.0.co;2}, abstractNote={Abstract: Studies were conducted in 1996 and 1997 to determine the effect of irrigation systems used to produce transplants on subsequent tolerance of banana and bell pepper (Capsicum annuum) transplants to field-applied herbicides. The irrigation systems were overhead (OH), ebb and flood (EF), and float (F). At 2 and 4 wk, banana and bell pepper injury was greatest from clomazone (1.1 kg/ha) treatments. Banana and bell pepper yield were not influenced by herbicide treatment. Although crop injury was greater in 1997, there was no herbicide or irrigation system interaction with year. OH and EF irrigated banana pepper and OH irrigated bell pepper produced the greatest total yield over two harvests, whereas F irrigated pepper yielded the least. F irrigated bell pepper plants had reduced early total yield and fancy fruits relative to other irrigation treatments. F irrigated plants yielded 32 and 22% less than OH irrigated plants in banana and bell pepper, respectively. Stand counts at 3 wk after planting (WAP) show that, unlike OH and EF treatments, F treatments lost 240 to 330 plants/ha. Differences in stand among treatments were greater in 1997 than 1996. Based on our study, the OH irrigated system appears to be the best system for producing bell pepper transplants with the greatest total yield. With banana pepper, both OH and EF irrigated systems appear to produce banana pepper transplants with the greatest total yield. Also, pepper transplant tolerance to herbicides is not affected by the irrigation system used to produce transplants. Nomenclature: Clomazone, 2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone; napropamide, N,N-diethyl-2-(1-napthalenyloxy)propanamide; trifluralin, 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine; pepper, Capsicum annuum L. Additional index words: Overhead irrigation, float irrigation, ebb and flow irrigation, bell pepper, banana pepper, herbicide tolerance. Abbreviations: DAP, days after planting; EC, emulsifiable concentrate; EF, ebb and flood; F, float; ME, microencapsulated; OH, overhead; PPI, preplant incorporated; PRE, premergence; WAP, weeks after planting.}, number={2}, journal={WEED TECHNOLOGY}, author={Galloway, BA and Monks, DW and Schultheis, JR}, year={2000}, pages={241–245} } @article{vangessel_monks_johnson_2000, title={Herbicides for potential use in lima bean (Phaseolus lunatus) production}, volume={14}, ISSN={["1550-2740"]}, DOI={10.1614/0890-037x(2000)014[0279:hfpuil]2.0.co;2}, abstractNote={Abstract: Herbicides registered for lima bean (Phaseolus lunatus L.) do not consistently control many troublesome weeds. Some herbicides registered for soybean (Glycine max) will control these weeds, but tolerance to lima bean is not known. Two field and two greenhouse studies were conducted to evaluate recently registered soybean herbicides for lima bean tolerance. Field studies were conducted in Delaware from 1996 to 1998, and in North Carolina during 1997 and 1998. The first field study evaluated the preemergence (PRE) herbicides cloransulam at 0.01, 0.02, 0.03, and 0.04 kg ai/ha; flumetsulam at 0.04, 0.05, 0.06, and 0.07 plus metolachlor at 1.3, 1.6, 1.8, and 2.1 kg ai/ha; sulfentrazone at 0.1, 0.15, 0.2, and 0.25 kg ai/ha; lactofen at 0.2 and 0.25 kg ai/ha; and the commercial standard treatment of imazethapyr plus metolachlor at 0.05 and 1.7 kg ai/ha, respectively. Lima bean injury 5 to 8 wk after emergence was lowest for imazethapyr plus metolachlor (standard treatment) and all four rates of cloransulam. Crop injury with flumetsulam plus metolachlor ranged from 0 to 18% and sulfentrazone ranged from 3 to 75% depending on location and rate. Lactofen treatments caused unacceptable lima bean injury. Yield in plots treated with cloransulam were consistently greater than in the plots treated with other herbicides. The second field study examined the postemergence (POST) herbicides cloransulam (0.013 or 0.02 kg ai/ha), bentazon (1.1 kg ai/ha), imazethapyr (0.035 or 0.053 kg ai/ha), and imazamox (0.018 or 0.036 kg ai/ha), applied when the crop was at the first trifoliolate stage. Cloransulam caused 0 to 13% crop injury and imazamox caused 3 to 25% injury depending on rate and location. In greenhouse studies, no differences were observed among eight common processing lima bean cultivars in tolerance to sulfentrazone applied PRE or to cloransulam, imazamox, imazethapyr, or bentazon applied POST. Nomenclature: Bentazon, 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide; cloransulam, 3-chloro-2-[[(5-ethoxy-7-fluoro[1,2,4]triazolo[1,5-c]pyrimidine-2yl)sulfonyl]amino]benzoic acid; flumetsulam, N-(2,6-difluorophenyl)-5-methyl[1,2,4]triazolo[1,5-α]pyrimidine-2-sulfonamide; imazamox, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-(methoxymethyl)-3-pyridinecarboxylic acid; imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid; lactofen, (±)-2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate; metolachlor, 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide; sulfentrazone, N-[2,4-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]phenyl]methanesulfonamide; lima bean, Phaseolus lunatus L., ‘M-15’, ‘F1072’, ‘M-408’, ‘Packers’, ‘Concentrated Fordhook’, ‘8-78’, ‘Eastland’; soybean, Glycine max (L.) Merr. Additional index words: Crop tolerance; varietal sensitivity. Abbreviations: COC, crop oil concentrate; NIS, nonionic surfactant; POST, postemergence; PRE, preemergence; WAT, weeks after treatment.}, number={2}, journal={WEED TECHNOLOGY}, author={Vangessel, MJ and Monks, DM and Johnson, QR}, year={2000}, pages={279–286} } @article{bell_fennimore_mcgiffen_lanini_monks_masiunas_bonanno_zandstra_umeda_stall_et al._2000, title={My view}, volume={48}, ISSN={["1550-2759"]}, DOI={10.1614/0043-1745(2000)048[0001:MV]2.0.CO;2}, abstractNote={1 Corresponding author. Univ. of California Cooperative, Holtville, CA 92250-9615; cebell@ucdavis.edu. 2 Corresponding author. Extension Univ. of California, Salinas, CA 93905; safennimore@ucdavis.edu. 3 Univ. of California, Riverside, CA 92521-0124. 4 Univ. of California, Davis, CA 95616. 5North Carolina State Univ., Raleigh, NC 27695-7609. 6 Univ. of Illinois, Urbana, IL 61801. 7 Univ. of Massachusetts, Methuen, MA 01844. 8 Michigan State Univ., East Lansing, MI 48824. 9 Univ. of Arizona Cooperative Extension, Phoenix, AZ 85040. 10 Univ. of Florida, Gainesville, FL 32611-0690. 11 Cornell Univ., Ithaca, NY 14853. 12 Oregon State Univ., Corvallis, OR 97330. 13 Oregon State Univ., Aurora, OR 97002}, number={1}, journal={WEED SCIENCE}, author={Bell, CE and Fennimore, SA and McGiffen, ME and Lanini, WT and Monks, DW and Masiunas, JB and Bonanno, AR and Zandstra, BH and Umeda, K and Stall, WM and et al.}, year={2000}, pages={1–1} } @article{monks_schultheis_1998, title={Critical weed-free period for large crabgrass (Digitaria sanguinalis) in transplanted watermelon (Citrullus lanatus)}, volume={46}, number={5}, journal={Weed Science}, author={Monks, D. W. and Schultheis, J. R.}, year={1998}, pages={530–532} } @article{garvey_monks_1998, title={Response of vegetable crops grown in rotation to sulfentrazone treated soybeans}, volume={51}, number={1998}, journal={Proceedings, Southern Weed Science Society}, author={Garvey, P. V. and Monks, D. W.}, year={1998}, pages={91–92} } @article{mitchem_rick_monks_1998, title={Weed control in apple and peach orchards with Azafenidin}, volume={51}, number={1998}, journal={Proceedings, Southern Weed Science Society}, author={Mitchem, W. E. and Rick, S. K. and Monks, D. W.}, year={1998}, pages={98} } @article{kay_monk_leidy_1997, title={Preliminary evaluation of the effects of fluridone in irrigation water on container-grown azalea}, volume={7}, number={1}, journal={HortTechnology}, author={Kay, S. H. and Monk, D. W. and Leidy, R. B.}, year={1997}, pages={60–62} } @article{hanzlik_kennedy_sanders_monks_1997, title={Response of European corn borer (Ostrinia nubilalis, Hubner) to two potato hybrids selected for resistance to Colorado potato beetle}, volume={16}, ISSN={["0261-2194"]}, DOI={10.1016/S0261-2194(97)00009-4}, abstractNote={The response of the European corn borer, Ostrinia nubilalis (Hubner) to K411-2 and NYL 235-4, fifth- and sixth-generation potato accessions derived from crosses between Solanum tuberosum L. and S. berthaultii (Hawkes) and selected for resistance to Colorado potato beetle (Leptinotarsa decemlineata, Say) and potato leafhopper (Empoasca fabae, Harris), was measured in field and greenhouse experiments. In one field test, which did not include NYL 235-4, the incidence of corn-borer damaged stems was eight times higher in the commercial potato varieties Atlantic, Superior and Norland than in K411-2. In a later field test, there were 11 times more European corn-borer damaged potato stems on Atlantic than on NYL 235-4. In a choice experiment, European corn-borer moths deposited significantly more egg masses on the susceptible Kennebec variety (72.9%) than on NYL 235-4 (27.1%), but in the absence of a choice, equal numbers of egg masses were deposited on both varieties. In a greenhouse experiment, fewer European corn-borer larvae (44%) were established on NYL 235-4 than on Kennebec plants.}, number={5}, journal={CROP PROTECTION}, author={Hanzlik, MW and Kennedy, GG and Sanders, DC and Monks, DW}, year={1997}, month={Aug}, pages={487–490} } @article{mitchem_monks_mills_1997, title={Response of transplanted watermelon (Citrullus lanatus) to ethalfluralin applied PPI, PRE, and POST}, volume={11}, ISSN={["0890-037X"]}, DOI={10.1017/s0890037x00041397}, abstractNote={Field experiments conducted in 1992 and 1993 evaluated transplanted watermelon tolerance to ethalfluralin applied PPI, PRE (before transplanting), and POST (immediately after transplanting) at 1.2 or 2.4 kg ai/ha. Other treatments for comparison included the registered herbicides ethalfluralin POST-directed spray (PDS), ethalfluralin PDS followed by (fb) naptalam POST, bensulide plus naptalam PPI, and a nontreated check. All treatments controlled common lambsquarters and goosegrass 83 to 100% 2 and 6 weeks after treatment (WAT). Watermelon was injured 30 to 77% in 1992 and 14 to 83% in 1993 by ethalfluralin PPI or PRE at 1.2 or 2.4 kg/ha. Ethalfluralin POST was not injurious to watermelon. In 1992, watermelon treated with ethalfluralin POST at 1.2 and 2.4 kg/ha yielded 52 to 62% more fruit than watermelon from the nontreated check. In 1993, yield of transplanted watermelon treated with ethalfluralin POST was similar to that in the nontreated check.}, number={1}, journal={WEED TECHNOLOGY}, author={Mitchem, WE and Monks, DW and Mills, RJ}, year={1997}, pages={88–91} } @article{monks_schultheis_mills_1996, title={Effects of weeds and herbicides on sweetpotato (Ipomoea batatas) transplant production using polyethylene bed covers}, volume={10}, ISSN={["0890-037X"]}, DOI={10.1017/s0890037x00039944}, abstractNote={Studies determined the effect of common lambsquarters, goosegrass, and a mixture of these on ‘Beauregard’ and ‘Jewel’ sweetpotato transplant production with or without polyethylene bed covers. Effects of herbicides on Beauregard in propagation beds were also studied. Black and infrared transmissible (IRT) plastic covers gave near 100% control of goosegrass and common lambsquarters, resulting in the greatest number and weight of Jewel transplants per plot. Common lambsquarters reduced transplant number and weight per plot with Jewel under clear plastic covers when compared with black and IRT plastic covers. Beauregard transplant number was not affected by row cover treatment. However, with data combined over all covers, Beauregard transplant weight per plot was lowest for treatments with weeds compared to weed-free plots. With the exception of DCPA, no significant (10% or greater) injury to Beauregard was observed with diphenamid, napropamide, chloramben, or chloramben plus fluazifop.}, number={2}, journal={WEED TECHNOLOGY}, author={Monks, DW and Schultheis, JR and Mills, RJ}, year={1996}, pages={273–277} }