@article{jones_bradshaw_contreras_cahoon jr_jennings_leon_everman_2024, title={Growth and fecundity of Palmer amaranth escaping glufosinate in soybean with and without grass competition}, volume={38}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2024.29}, abstractNote={Abstract Field experiments were conducted at Clayton and Rocky Mount, North Carolina, during the summer of 2020 to determine the growth and fecundity of Palmer amaranth plants surviving glufosinate with and without grass competition in soybean. Glufosinate (590 g ai ha -1 ) was applied at early postemergence (5 cm Palmer amaranth height), mid-postemergence (7-10 cm), and late postemergence (>10 cm) and at orthogonal combinations of those timings. Non-treated Palmer amaranth was grown in weedy (i.e., intraspecific and grass competition), weed-free in-crop (WFIC), and weed-free fallow (WFNC) conditions for comparisons. No Palmer amaranth plants survived the sequential glufosinate applications and control decreased as the plants were treated at a larger size for both experiments. The apical and circumference growth rate of Palmer amaranth surviving glufosinate was reduced by more than 44% when compared to the WFNC Palmer amaranth. The biomass of Palmer amaranth plants surviving glufosinate was reduced by more than 87% when compared to the WFNC Palmer amaranth. The fecundity of Palmer amaranth surviving glufosinate was reduced by more than 70% when compared to WFNC Palmer amaranth. Palmer amaranth surviving glufosinate were as fecund as the WFIC Palmer amaranth in both experiments for soybean. The results prove that despite the significant vegetative growth rate decrease of Palmer amaranth surviving glufosinate, plants can be fecund as non-treated plants in soybean. The trends of growth and fecundity of Palmer amaranth surviving glufosinate with and without grass competition were similar. These results suggest that glufosinate-treated grass weeds may not reduce the growth or fecundity of Palmer amaranth surviving glufosinate.}, journal={WEED TECHNOLOGY}, author={Jones, Eric A. L. and Bradshaw, Colden L. and Contreras, Diego J. and Cahoon Jr, Charles W. and Jennings, Katherine M. and Leon, Ramon G. and Everman, Wesley J.}, year={2024}, month={May} } @article{jones_andres_owen_dunne_contreras_cahoon_jennings_leon_everman_2023, title={Confirmation of a five-way herbicide-resistant Amaranthus tuberculatus population in North Carolina}, volume={7}, ISSN={["1365-3180"]}, url={https://doi.org/10.1111/wre.12590}, DOI={10.1111/wre.12590}, abstractNote={AbstractAmaranthus tuberculatus (waterhemp) is a pervasive weed of the Mid‐west and ‐south United States and is not native to North Carolina but infestations in crop fields have been reported recently. Amaranthus tuberculatus has evolved resistance to seven herbicide groups and multiple herbicide‐resistant populations are common where the species is native. The reported A. tuberculatus infestations in North Carolina have not been controlled with herbicides but no formal herbicide resistance characterisation has been conducted to date. Glasshouse dose–response experiments were conducted to determine the susceptibility of a population collected from Surry County, North Carolina to commonly applied postemergence herbicides compared to a herbicide‐susceptible population collected from Story County, Iowa. The Surry County population survived labelled rates of imazethapyr, atrazine, glyphosate, fomesafen, and mesotrione; the Story County population was controlled with these herbicides. Further, 2,4‐D, dicamba, and glufosinate effectively controlled the Surry and Story County populations. Molecular sequencing assays were subsequently conducted to determine if altered target sites facilitated resistance in the acetolactate synthase (ALS), 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS), photosystem II (psbA), and protoporphyrinogen oxidase (PPX2) genes. The Surry County population carried a Trp574Leu and ∆Gly210 mutations in the ALS and PPX2 gene, respectively. No mutations that would confer resistance were found in the EPSPS or psbA gene for either population. The results of both experiments provide evidence that a five‐way herbicide‐resistant A. tuberculatus population has encroached North Carolina. More research is needed to determine the mechanisms of resistance to atrazine, glyphosate, and mesotrione.}, journal={WEED RESEARCH}, author={Jones, Eric A. L. and Andres, Ryan J. and Owen, Micheal D. K. and Dunne, Jeffrey C. and Contreras, Diego J. and Cahoon, Charles W. and Jennings, Katherine M. and Leon, Ramon G. and Everman, Wesley J.}, year={2023}, month={Jul} } @article{jones_austin_dunne_leon_everman_2023, title={Discrimination between protoporphyrinogen oxidase-inhibiting herbicide-resistant and herbicide-susceptible redroot pigweed (Amaranthus retroflexus) with spectral reflectance}, volume={5}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2023.25}, DOI={10.1017/wsc.2023.25}, abstractNote={AbstractThe current assays to confirm herbicide resistance can be time- and labor-intensive (dose–response) or require a skill set/technical equipment (genetic sequencing). Stakeholders could benefit from a rapid assay to confirm herbicide-resistant weeds to ensure sustainable crop production. Because protoporphyrinogen oxidase (PPO)-inhibiting herbicides rapidly interfere with chlorophyll production/integrity; we propose a new, rapid assay utilizing spectral reflectance to confirm resistance. Leaf disks were excised from two PPO-inhibiting herbicide-resistant (target-site [TSR] and non–target site [NTSR]) and herbicide-susceptible redroot pigweed (Amaranthus retroflexus L.) populations and placed into a 24-well plate containing different concentrations (0 to 10 mM) of fomesafen for 48 h. A multispectral sensor captured images from the red (668 nm), green (560 nm), blue (475 nm), and red edge (717 nm) wavebands after a 48-h incubation period. The green leaf index (GLI) was utilized to determine spectral reflectance ratios of the treated leaf disks. Clear differences of spectral reflectance were observed in the red edge waveband for all populations treated with the 10 mM concentration in the dose–response assays. Differences of spectral reflectance were observed for the NTSR population compared with the TSR and susceptible populations treated with the 10 mM concentration in the green waveband and the GLI in the dose–response assay. Leaf disks from the aforementioned A. retroflexus populations and two additional susceptible populations were subjected to a similar assay with the discriminating concentration (10 mM). Spectral reflectance was different between the PPO-inhibiting herbicide-resistant and herbicide-susceptible populations in the red, blue, and green wavebands. Spectral reflectance was not distinctive between the populations in the red edge waveband and the GLI. The results provide a basis for rapidly (∼48 h) detecting PPO-inhibiting herbicide-resistant A. retroflexus via spectral reflectance. Discrimination between TSR and NTSR populations was possible only in the dose–response assay, but the assay still has utility in distinguishing herbicide-resistant plants from herbicide-susceptible plants.}, journal={WEED SCIENCE}, author={Jones, Eric A. L. and Austin, Robert and Dunne, Jeffrey C. and Leon, Ramon G. and Everman, Wesley J.}, year={2023}, month={May} } @article{jones_leon_everman_2022, title={Biological effects on Palmer amaranth surviving glufosinate}, volume={5}, ISSN={["2639-6696"]}, url={https://doi.org/10.1002/agg2.20315}, DOI={10.1002/agg2.20315}, abstractNote={AbstractPalmer amaranth (Amaranthus palmeri S. Watson) is a difficult weed to manage due to competitive growth, fecundity, and evolved herbicide resistance. Limited information exist on the fecundity of vegetative stage Palmer amaranth surviving glufosinate applied at different timings. In addition, research has not investigated the germination or glufosinate susceptibility of the offspring from these surviving plants. Field experiments were conducted across three locations in 2019 to determine (a) the fecundity of Palmer amaranth plants surviving glufosinate applied at different vegetative growth stages, and (b) if the offspring from the surviving plants exhibited differential germination and susceptibility to glufosinate. Palmer amaranth was treated at three different vegetative sizes (5 cm, 7–10 cm, > 10 cm) and orthogonal combinations of these application timings. The application timings corresponded to early‐, mid‐ and late‐postemergence applications. Palmer amaranth plants surviving the mid‐, late‐, and the mid postemergence followed by late postemergence glufosinate application were fecund. Palmer amaranth plants surviving the mid postemergence followed by late postemergence application produced less seed than the plants surviving the mid postemergence and late postemergence application. Palmer amaranth was controlled with other glufosinate applications resulting in no seed production. Germination was affected across location and glufosinate treatments, but no clear trend/pattern was observed. The offspring from Palmer amaranth plants surviving glufosinate applications were controlled by all glufosinate rates tested. These experiments provide evidence that Palmer amaranth surviving glufosinate in the vegetative stages may remain fecund, but fecundity can vary with application timing. No measurable effect on the offspring germination or susceptibility to glufosinate was apparent.}, number={4}, journal={AGROSYSTEMS GEOSCIENCES & ENVIRONMENT}, author={Jones, Eric and Leon, Ramon G. and Everman, Wesley Jay}, year={2022} } @article{jones_leon_everman_2022, title={Control of pervasive row crop weeds with dicamba and glufosinate applied alone, mixed, or sequentially}, volume={10}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2022.80}, DOI={10.1017/wet.2022.80}, abstractNote={AbstractDicamba and glufosinate are among the few effective postemergence herbicides to control multiple herbicide-resistant weeds in southeastern U.S. cotton and soybean production. Field studies were conducted to determine the effect of weed size and the application of dicamba and glufosinate individually, mixed, or sequentially on common ragweed, goosegrass, large crabgrass, ivyleaf morningglory, Palmer amaranth, and sicklepod control. Sequential herbicide treatments were applied 7 d after the initial treatment. The tested weeds sizes predominantly did not affect weed control. Control of broadleaf weed species with sequential herbicide applications never increased compared to the initial herbicide application. Two applications of glufosinate and/or dicamba + glufosinate controlled grasses better than one application. The order of the herbicides in the sequential applications did not affect broadleaf species control, whereas herbicide order was important for the control of grass weeds. Grass weed control was higher when glufosinate was applied before dicamba. Dicamba + glufosinate additively controlled the weeds, except for goosegrass, for which control was less for dicamba + glufosinate compared to glufosinate alone. The results of the experiment provide evidence that dicamba and glufosinate applied individually, mixed, and sequentially are effective on common row crop weeds found in the southeastern United States, but the species present may dictate how the herbicides are applied together.}, journal={WEED TECHNOLOGY}, author={Jones, Eric A. L. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={Oct} } @article{jones_cahoon_leon_everman_2022, title={Surveying stakeholder's perception of glufosinate and use in North Carolina}, volume={5}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2022.31}, DOI={10.1017/wet.2022.31}, abstractNote={AbstractGlufosinate is among the few remaining effective herbicides for postemergence weed control in North Carolina crops. The evolution of glufosinate resistance in key weeds is currently not widespread in North Carolina, but to better assess the current status of glufosinate effectiveness, surveys were distributed at Extension meetings in 2019 and 2020. The surveys were designed to provide information about North Carolina farmers’ perception of glufosinate and its use. Survey results indicate that many North Carolina farmers (≥26%) apply glufosinate at the correct timing (5- to 10-cm weeds). In addition, North Carolina farmers (≥22%) are applying glufosinate as a complementary herbicide to other efficacious herbicides and to control herbicide-resistant weeds, suggesting that glufosinate is part of a diverse chemical weed management plan. Conversely, survey findings indicated that some farmers (13% to 17%) rely exclusively on glufosinate for weed control. Additionally, 28% to 30% of farmers reported glufosinate control failures, and control failures were observed on several weed species among corn, cotton, and soybean crops. The results of the survey suggest that most North Carolina farmers are currently stewarding glufosinate, but they also support the need for Extension personnel to keep educating farmers on how to correctly use glufosinate to delay the evolution of glufosinate-resistant weeds. Semiannual surveys should be distributed to monitor where glufosinate control failures occur and the weed species not being controlled.}, journal={WEED TECHNOLOGY}, author={Jones, Eric A. L. and Cahoon, Charles W. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={May} } @article{jones_austin_dunne_cahoon_jennings_leon_everman_2022, title={Utilization of image-based spectral reflectance to detect herbicide resistance in glufosinate-resistant and glufosinate-susceptible plants: a proof of concept}, volume={12}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2022.68}, DOI={10.1017/wsc.2022.68}, abstractNote={AbstractGlufosinate is an effective postemergence herbicide, and overreliance on this herbicide for weed control is likely to increase and select for glufosinate-resistant weeds. Common assays to confirm herbicide resistance are dose–response and molecular sequencing techniques; both can require significant time, labor, unique technical equipment, and a specialized skillset to perform. As an alternative, we propose an image-based approach that uses a relatively inexpensive multispectral sensor designed for unmanned aerial vehicles to measure and quantify surface reflectance from glufosinate-treated leaf disks. Leaf disks were excised from a glufosinate-resistant and glufosinate-susceptible corn (Zea mays L.), cotton (Gossypium hirsutum L.), and soybean [Glycine max (L.) Merr.] varieties and placed into a 24-well plate containing eight different concentrations (0 to 10 mM) of glufosinate for 48 h. Multispectral images were collected after the 48-h incubation period across five discrete wave bands: blue (475 to 507 nm), green (560 to 587 nm), red (668to 682 nm), red edge (717 to 729 nm), and near infrared (842 to 899 nm). The green leaf index (GLI; a metric to measure chlorophyll content) was utilized to determine relationships between measured reflectance from the tested wave bands from the treated leaf disks and the glufosinate concentration. Clear differences of spectral reflectance were observed between the corn, cotton, and soybean leaf disks of the glufosinate-resistant and glufosinate-susceptible varieties at the 10 mM concentration for select wave bands and GLI. Leaf disks from two additional glufosinate-resistant and glufosinate-susceptible varieties of each crop were subjected to a similar assay with two concentrations: 0 and 10 mM. No differences of spectral reflectance were observed from the corn and soybean varieties in all wave bands and the GLI. The leaf disks of the glufosinate-resistant and glufosinate-susceptible cotton varieties were spectrally distinct in the green, blue, and red-edge wave bands. The results provide a basis for rapidly detecting glufosinate-resistant plants via spectral reflectance. Future research will need to determine the glufosinate concentrations, useful wave bands, and susceptible/resistant thresholds for weeds that evolve resistance.}, journal={WEED SCIENCE}, author={Jones, Eric A. L. and Austin, Robert and Dunne, Jeffrey C. and Cahoon, Charles W. and Jennings, Katherine M. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={Dec} } @article{glaspie_jones_penner_pawlak_everman_2021, title={Effect of Clay, Soil Organic Matter, and Soil pH on Initial and Residual Weed Control with Flumioxazin}, volume={11}, ISSN={["2073-4395"]}, DOI={10.3390/agronomy11071326}, abstractNote={Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.}, number={7}, journal={AGRONOMY-BASEL}, author={Glaspie, Calvin F. and Jones, Eric A. L. and Penner, Donald and Pawlak, John A. and Everman, Wesley J.}, year={2021}, month={Jul} } @article{jones_owen_2021, title={Investigating the Efficacy of Selected Very-Long-Chain Fatty Acid-Inhibiting Herbicides on Iowa Waterhemp (Amaranthus tuberculatus) Populations with Evolved Multiple Herbicide Resistances}, volume={11}, ISSN={["2073-4395"]}, DOI={10.3390/agronomy11030595}, abstractNote={Very long chain fatty acid (VLCFA)-inhibiting herbicides (Herbicide group (HG) 15) have been applied to corn and soybean fields in Iowa since the 1960s. The VLCFA-inhibiting herbicides are now applied more frequently to control multiple herbicide-resistant (MHR) waterhemp (Amaranthus tuberculatus Moq. J.D. Sauer) populations that are ubiquitous across the Midwest United States as resistance to the VLCFA-inhibiting herbicides is not widespread. Waterhemp has evolved multiple resistances to herbicides from seven sites of action (HG 2, 4, 5, 9, 14, 15, and 27), and six-way herbicide-resistant populations have been confirmed. Thus, the objective of this study was to determine if selected Iowa waterhemp populations are less sensitive to VLCFA-inhibiting herbicides when additional herbicide resistance traits have evolved within the selected population. Dose–response assays were conducted in a germination chamber to determine the efficacy of three selected VLCFA-inhibiting herbicides (acetochlor, S-metolachlor, and flufenacet) on selected Iowa MHR waterhemp populations. An herbicide-susceptible, three-way, four-way, and five-way herbicide-resistant waterhemp population responded to the herbicide treatments differently; however, several of the four-way and five-way herbicide-resistant populations exhibited resistance ratios greater than 1 when treated with acetochlor and S-metolachlor. Selected four-way herbicide-resistant waterhemp populations from Iowa were subjected to a dose–response assay in the field using the same VLCFA-inhibiting herbicides, and all herbicides achieved control greater than 80% at the maximum labeled rate. The results of the experiments provide evidence that some MHR waterhemp populations may exhibit decreased susceptibility the VLCFA-inhibiting herbicides, but generally, these herbicides remain efficacious on Iowa MHR waterhemp populations.}, number={3}, journal={AGRONOMY-BASEL}, author={Jones, Eric A. L. and Owen, Micheal D. K.}, year={2021}, month={Mar} } @article{sanders_jones_austin_roberson_richardson_everman_2021, title={Remote Sensing for Palmer Amaranth (Amaranthus palmeri S. Wats.) Detection in Soybean (Glycine max (L.) Merr.)}, volume={11}, ISSN={["2073-4395"]}, DOI={10.3390/agronomy11101909}, abstractNote={Field studies were conducted in 2016 and 2017 to determine if multispectral imagery collected from an unmanned aerial vehicle (UAV) equipped with a five-band sensor could successfully identify Palmer amaranth (Amaranthus palmeri) infestations of various densities growing among soybeans (Glycine max [L.] Merr.). The multispectral sensor captures imagery from five wavebands: 475 (blue), 560 (green), 668 (red), 840 (near infrared [NIR]), and 717 nm (red-edge). Image analysis was performed to examine the spectral properties of discrete Palmer amaranth and soybean plants at various weed densities using these wavebands. Additionally, imagery was subjected to supervised classification to evaluate the usefulness of classification as a tool to differentiate the two species in a field setting. Date was a significant factor influencing the spectral reflectance values of the Palmer amaranth densities. The effects of altitude on reflectance were less clear and were dependent on band and density being evaluated. The near infrared (NIR) waveband offered the best resolution in separating Palmer amaranth densities. Spectral separability in the other wavebands was less defined, although low weed densities were consistently able to be discriminated from high densities. Palmer amaranth and soybean were found to be spectrally distinct regardless of imaging date, weed density, or waveband. Soybean exhibited overall lower reflectance intensity than Palmer amaranth across all wavebands. The reflectance of both species within blue, green, red, and red-edge wavebands declined as the season progressed, while reflectance in NIR increased. Near infrared and red-edge wavebands were shown to be the most useful for species discrimination and maintained their utility at most weed densities. Palmer amaranth weed densities were found to be spectrally distinct from one another in all wavebands, with greatest distinction when using the red, NIR and red-edge wavebands. Supervised classification in a two-class system was consistently able to discriminate between Palmer amaranth and soybean with at least 80% overall accuracy. The incorporation of a weed density component into these classifications introduced an error of 65% or greater into these classifications. Reducing the number of classes in a supervised classification system could improve the accuracy of discriminating between Palmer amaranth and soybean.}, number={10}, journal={AGRONOMY-BASEL}, author={Sanders, John T. and Jones, Eric A. L. and Austin, Robert and Roberson, Gary T. and Richardson, Robert J. and Everman, Wesley J.}, year={2021}, month={Oct} } @article{jones_owen_leon_2019, title={Influence of multiple herbicide resistance on growth in Amaranthus tuberculatus}, volume={59}, ISSN={["1365-3180"]}, url={https://doi.org/10.1111/wre.12361}, DOI={10.1111/wre.12361}, abstractNote={SummaryPlant defence traits, such as herbicide resistance mutations, may incur a fitness cost to plants that become evident when the trait is not needed. However, individuals with multiple herbicide resistance traits may decrease fitness beyond that of plants with a single herbicide resistance mutation. Multiple herbicide‐resistant (MHR) Amaranthus tuberculatus populations are becoming more prevalent in Midwest United States agroecosystems. The objective was to determine whether selected MHR A. tuberculatus populations express differential development when grown in a herbicide‐free environment. The hypothesis was that MHR A. tuberculatus populations become increasingly less fit when additional herbicide resistances evolve. Multiple herbicide‐resistant and herbicide‐susceptible A. tuberculatus populations were grown in a herbicide‐free field for 20 weeks for two seasons. Differences (P < 0.001) in apical growth were detected 5 and 7 weeks after transplanting for all populations in 2016 and 2017 respectively. Gender and population influenced (P < 0.001) flowering date, with males flowering up to 1.5 weeks earlier than females, but did not cause pollination asynchrony. Shoot biomass was not different (P = 0.84) across A. tuberculatus populations, but there were differences (P < 0.001) for gender and year. Seed production was different amongst A. tuberculatus populations (P = 0.001), but was not influenced by the number of MHR traits. Conversely, a negative quadratic relationship between seed mass and the number of MHR traits was observed (r2 = 0.32; P < 0.001). The experiment results demonstrate that MHR in A. tuberculatus populations is not incurring a fitness penalty that will remove the populations in the immediate future.}, number={3}, journal={WEED RESEARCH}, publisher={Wiley}, author={Jones, E. A. L. and Owen, M. D. K. and Leon, R. G.}, editor={Darmency, HenriEditor}, year={2019}, month={Jun}, pages={235–244} }