@article{jones_andres_owen_dunne_contreras_cahoon_jennings_leon_everman_2023, title={Confirmation of a five-way herbicide-resistant Amaranthus tuberculatus population in North Carolina}, volume={7}, ISSN={["1365-3180"]}, url={https://doi.org/10.1111/wre.12590}, DOI={10.1111/wre.12590}, abstractNote={Abstract}, journal={WEED RESEARCH}, author={Jones, Eric A. L. and Andres, Ryan J. and Owen, Micheal D. K. and Dunne, Jeffrey C. and Contreras, Diego J. and Cahoon, Charles W. and Jennings, Katherine M. and Leon, Ramon G. and Everman, Wesley J.}, year={2023}, month={Jul} } @article{jones_austin_dunne_leon_everman_2023, title={Discrimination between protoporphyrinogen oxidase-inhibiting herbicide-resistant and herbicide-susceptible redroot pigweed (Amaranthus retroflexus) with spectral reflectance}, volume={5}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2023.25}, DOI={10.1017/wsc.2023.25}, abstractNote={Abstract}, journal={WEED SCIENCE}, author={Jones, Eric A. L. and Austin, Robert and Dunne, Jeffrey C. and Leon, Ramon G. and Everman, Wesley J.}, year={2023}, month={May} } @article{jones_leon_everman_2022, title={Biological effects on Palmer amaranth surviving glufosinate}, volume={5}, ISSN={["2639-6696"]}, url={https://doi.org/10.1002/agg2.20315}, DOI={10.1002/agg2.20315}, abstractNote={Abstract}, number={4}, journal={AGROSYSTEMS GEOSCIENCES & ENVIRONMENT}, author={Jones, Eric and Leon, Ramon G. and Everman, Wesley Jay}, year={2022} } @article{jones_leon_everman_2022, title={Control of pervasive row crop weeds with dicamba and glufosinate applied alone, mixed, or sequentially}, volume={10}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2022.80}, DOI={10.1017/wet.2022.80}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Jones, Eric A. L. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={Oct} } @article{jones_cahoon_leon_everman_2022, title={Surveying stakeholder's perception of glufosinate and use in North Carolina}, volume={5}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2022.31}, DOI={10.1017/wet.2022.31}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Jones, Eric A. L. and Cahoon, Charles W. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={May} } @article{jones_austin_dunne_cahoon_jennings_leon_everman_2022, title={Utilization of image-based spectral reflectance to detect herbicide resistance in glufosinate-resistant and glufosinate-susceptible plants: a proof of concept}, volume={12}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2022.68}, DOI={10.1017/wsc.2022.68}, abstractNote={Abstract}, journal={WEED SCIENCE}, author={Jones, Eric A. L. and Austin, Robert and Dunne, Jeffrey C. and Cahoon, Charles W. and Jennings, Katherine M. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={Dec} } @article{glaspie_jones_penner_pawlak_everman_2021, title={Effect of Clay, Soil Organic Matter, and Soil pH on Initial and Residual Weed Control with Flumioxazin}, volume={11}, ISSN={["2073-4395"]}, DOI={10.3390/agronomy11071326}, abstractNote={Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.}, number={7}, journal={AGRONOMY-BASEL}, author={Glaspie, Calvin F. and Jones, Eric A. L. and Penner, Donald and Pawlak, John A. and Everman, Wesley J.}, year={2021}, month={Jul} } @article{jones_owen_2021, title={Investigating the Efficacy of Selected Very-Long-Chain Fatty Acid-Inhibiting Herbicides on Iowa Waterhemp (Amaranthus tuberculatus) Populations with Evolved Multiple Herbicide Resistances}, volume={11}, ISSN={["2073-4395"]}, DOI={10.3390/agronomy11030595}, abstractNote={Very long chain fatty acid (VLCFA)-inhibiting herbicides (Herbicide group (HG) 15) have been applied to corn and soybean fields in Iowa since the 1960s. The VLCFA-inhibiting herbicides are now applied more frequently to control multiple herbicide-resistant (MHR) waterhemp (Amaranthus tuberculatus Moq. J.D. Sauer) populations that are ubiquitous across the Midwest United States as resistance to the VLCFA-inhibiting herbicides is not widespread. Waterhemp has evolved multiple resistances to herbicides from seven sites of action (HG 2, 4, 5, 9, 14, 15, and 27), and six-way herbicide-resistant populations have been confirmed. Thus, the objective of this study was to determine if selected Iowa waterhemp populations are less sensitive to VLCFA-inhibiting herbicides when additional herbicide resistance traits have evolved within the selected population. Dose–response assays were conducted in a germination chamber to determine the efficacy of three selected VLCFA-inhibiting herbicides (acetochlor, S-metolachlor, and flufenacet) on selected Iowa MHR waterhemp populations. An herbicide-susceptible, three-way, four-way, and five-way herbicide-resistant waterhemp population responded to the herbicide treatments differently; however, several of the four-way and five-way herbicide-resistant populations exhibited resistance ratios greater than 1 when treated with acetochlor and S-metolachlor. Selected four-way herbicide-resistant waterhemp populations from Iowa were subjected to a dose–response assay in the field using the same VLCFA-inhibiting herbicides, and all herbicides achieved control greater than 80% at the maximum labeled rate. The results of the experiments provide evidence that some MHR waterhemp populations may exhibit decreased susceptibility the VLCFA-inhibiting herbicides, but generally, these herbicides remain efficacious on Iowa MHR waterhemp populations.}, number={3}, journal={AGRONOMY-BASEL}, author={Jones, Eric A. L. and Owen, Micheal D. K.}, year={2021}, month={Mar} } @article{sanders_jones_austin_roberson_richardson_everman_2021, title={Remote Sensing for Palmer Amaranth (Amaranthus palmeri S. Wats.) Detection in Soybean (Glycine max (L.) Merr.)}, volume={11}, ISSN={["2073-4395"]}, DOI={10.3390/agronomy11101909}, abstractNote={Field studies were conducted in 2016 and 2017 to determine if multispectral imagery collected from an unmanned aerial vehicle (UAV) equipped with a five-band sensor could successfully identify Palmer amaranth (Amaranthus palmeri) infestations of various densities growing among soybeans (Glycine max [L.] Merr.). The multispectral sensor captures imagery from five wavebands: 475 (blue), 560 (green), 668 (red), 840 (near infrared [NIR]), and 717 nm (red-edge). Image analysis was performed to examine the spectral properties of discrete Palmer amaranth and soybean plants at various weed densities using these wavebands. Additionally, imagery was subjected to supervised classification to evaluate the usefulness of classification as a tool to differentiate the two species in a field setting. Date was a significant factor influencing the spectral reflectance values of the Palmer amaranth densities. The effects of altitude on reflectance were less clear and were dependent on band and density being evaluated. The near infrared (NIR) waveband offered the best resolution in separating Palmer amaranth densities. Spectral separability in the other wavebands was less defined, although low weed densities were consistently able to be discriminated from high densities. Palmer amaranth and soybean were found to be spectrally distinct regardless of imaging date, weed density, or waveband. Soybean exhibited overall lower reflectance intensity than Palmer amaranth across all wavebands. The reflectance of both species within blue, green, red, and red-edge wavebands declined as the season progressed, while reflectance in NIR increased. Near infrared and red-edge wavebands were shown to be the most useful for species discrimination and maintained their utility at most weed densities. Palmer amaranth weed densities were found to be spectrally distinct from one another in all wavebands, with greatest distinction when using the red, NIR and red-edge wavebands. Supervised classification in a two-class system was consistently able to discriminate between Palmer amaranth and soybean with at least 80% overall accuracy. The incorporation of a weed density component into these classifications introduced an error of 65% or greater into these classifications. Reducing the number of classes in a supervised classification system could improve the accuracy of discriminating between Palmer amaranth and soybean.}, number={10}, journal={AGRONOMY-BASEL}, author={Sanders, John T. and Jones, Eric A. L. and Austin, Robert and Roberson, Gary T. and Richardson, Robert J. and Everman, Wesley J.}, year={2021}, month={Oct} } @article{jones_owen_leon_2019, title={Influence of multiple herbicide resistance on growth in Amaranthus tuberculatus}, volume={59}, ISSN={["1365-3180"]}, url={https://doi.org/10.1111/wre.12361}, DOI={10.1111/wre.12361}, abstractNote={Summary}, number={3}, journal={WEED RESEARCH}, publisher={Wiley}, author={Jones, E. A. L. and Owen, M. D. K. and Leon, R. G.}, editor={Darmency, HenriEditor}, year={2019}, month={Jun}, pages={235–244} }