@article{dieffenderfer_goodell_mills_mcknight_yao_lin_beppler_bent_lee_misra_et al._2016, title={Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease}, volume={20}, ISSN={2168-2194 2168-2208}, url={http://dx.doi.org/10.1109/JBHI.2016.2573286}, DOI={10.1109/jbhi.2016.2573286}, abstractNote={We present our efforts toward enabling a wearable sensor system that allows for the correlation of individual environmental exposures with physiologic and subsequent adverse health responses. This system will permit a better understanding of the impact of increased ozone levels and other pollutants on chronic asthma conditions. We discuss the inefficiency of existing commercial off-the-shelf components to achieve continuous monitoring and our system-level and nano-enabled efforts toward improving the wearability and power consumption. Our system consists of a wristband, a chest patch, and a handheld spirometer. We describe our preliminary efforts to achieve a submilliwatt system ultimately powered by the energy harvested from thermal radiation and motion of the body with the primary contributions being an ultralow-power ozone sensor, an volatile organic compounds sensor, spirometer, and the integration of these and other sensors in a multimodal sensing platform. The measured environmental parameters include ambient ozone concentration, temperature, and relative humidity. Our array of sensors also assesses heart rate via photoplethysmography and electrocardiography, respiratory rate via photoplethysmography, skin impedance, three-axis acceleration, wheezing via a microphone, and expiratory airflow. The sensors on the wristband, chest patch, and spirometer consume 0.83, 0.96, and 0.01 mW, respectively. The data from each sensor are continually streamed to a peripheral data aggregation device and are subsequently transferred to a dedicated server for cloud storage. Future work includes reducing the power consumption of the system-on-chip including radio to reduce the entirety of each described system in the submilliwatt range.}, number={5}, journal={IEEE Journal of Biomedical and Health Informatics}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Dieffenderfer, James and Goodell, Henry and Mills, Steven and McKnight, Michael and Yao, Shanshan and Lin, Feiyan and Beppler, Eric and Bent, Brinnae and Lee, Bongmook and Misra, Veena and et al.}, year={2016}, month={Sep}, pages={1251–1264} } @inproceedings{dieffenderfer_wilkins_hood_beppler_daniele_bozkurt_2016, title={Towards a sweat-based wireless and wearable electrochemical sensor}, booktitle={2016 ieee sensors}, author={Dieffenderfer, J. and Wilkins, M. and Hood, C. and Beppler, E. and Daniele, M. A. and Bozkurt, A.}, year={2016} } @inproceedings{dieffenderfer_goodell_bent_beppler_jayakumar_yokus_jur_bozkurt_peden_2015, title={Wearable wireless sensors for chronic respiratory disease monitoring}, DOI={10.1109/bsn.2015.7299411}, abstractNote={We present a wearable sensor system consisting of a wristband and chest patch to enable the correlation of individual environmental exposure to health response for understanding impacts of ozone on chronic asthma conditions. The wrist worn device measures ambient ozone concentration, heart rate via plethysmography (PPG), three-axis acceleration, ambient temperature, and ambient relative humidity. The chest patch measures heart rate via electrocardiography (ECG) and PPG, respiratory rate via PPG, wheezing via a microphone, and three-axis acceleration. The data from each sensor is continually streamed to a peripheral data aggregation device, and is subsequently transferred to a dedicated server for cloud storage. The current generation of the system uses only commercially-off-the-shelf (COTS) components where the entire electronic structure of the wristband has dimensions of 3.1×4.1×1.2 cm3 while the chest patch electronics has a dimensions of 3.3×4.4×1.2 cm3. The power consumptions of the wristband and chest patch are 78 mW and 33 mW respectively where using a 400 mAh lithium polymer battery would operate the wristband for around 15 hours and the chest patch for around 36 hours.}, booktitle={2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)}, author={Dieffenderfer, J. P. and Goodell, H. and Bent, B. and Beppler, E. and Jayakumar, R. and Yokus, M. and Jur, J. S. and Bozkurt, A. and Peden, D.}, year={2015} } @inproceedings{dieffenderfer_beppler_novak_whitmire_jayakumar_randall_qu_rajagopalan_bozkurt_2014, title={Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring}, DOI={10.1109/embc.2014.6944289}, abstractNote={We present a solar-powered, wireless, wrist-worn platform for continuous monitoring of physiological and environmental parameters during the activities of daily life. In this study, we demonstrate the capability to produce photoplethysmogram (PPG) signals using this platform. To adhere to a low power budget for solar-powering, a 574nm green light source is used where the PPG from the radial artery would be obtained with minimal signal conditioning. The system incorporates two monocrystalline solar cells to charge the onboard 20mAh lithium polymer battery. Bluetooth Low Energy (BLE) is used to tether the device to a smartphone that makes the phone an access point to a dedicated server for long term continuous storage of data. Two power management schemes have been proposed depending on the availability of solar energy. In low light situations, if the battery is low, the device obtains a 5-second PPG waveform every minute to consume an average power of 0.57 mW. In scenarios where the battery is at a sustainable voltage, the device is set to enter its normal 30 Hz acquisition mode, consuming around 13.7 mW. We also present our efforts towards improving the charge storage capacity of our on-board super-capacitor.}, booktitle={2014 36th annual international conference of the ieee engineering in medicine and biology society (embc)}, author={Dieffenderfer, J. P. and Beppler, E. and Novak, T. and Whitmire, E. and Jayakumar, R. and Randall, C. and Qu, W. G. and Rajagopalan, R. and Bozkurt, A.}, year={2014}, pages={3142–3145} }