@article{kang_smith_drake_2012, title={Alternative Bleaching Methods for Cheddar Cheese Whey}, volume={77}, ISSN={["1750-3841"]}, DOI={10.1111/j.1750-3841.2012.02774.x}, abstractNote={Abstract:  Residual annatto colorant (norbixin) in fluid Cheddar cheese whey can be bleached. The 2 approved chemical bleaching agents for whey, hydrogen peroxide (HP) and benzoyl peroxide (BP), negatively impact the flavor of dried whey protein. The objective of this study was to evaluate alternative methods for bleaching liquid whey: ultraviolet radiation (UV), acid‐activated bentonite (BT), and ozone (OZ). Colored Cheddar cheese whey was manufactured followed by pasteurization and fat separation. Liquid whey was subjected to one of 5 treatments: control (CT) (no bleaching; 50 °C, 1 h), HP (250 mg/kg; 50 °C, 1 h), UV (1 min exposure; 50 °C), BT (0.5% w/w; 50 °C, 1 h), or OZ (2.2g/h, 50 °C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray‐dried to 80% whey protein concentrate (WPC80). The entire experiment was replicated 3 times. Color (norbixin extraction and measurement), descriptive sensory, and instrumental volatile analyses were conducted on WPC80. Norbixin elimination was 28%, 79%, 39%, and 15% for HP, BT, UV, and OZ treatments, respectively. WPC80 from bleached whey, regardless of bleaching agent, had lower sweet aromatic and cooked/milky flavors compared to unbleached CT (P < 0.05). The HP and BT WPC80 had higher fatty flavor compared to the CT WPC80 (P < 0.05), and the UV and OZ WPC80 had distinct mushroom/burnt and animal flavors. Volatile compound results were consistent with sensory results and confirmed higher relative abundances of volatile aldehydes in UV, HP, and OZ WPC80 compared to CT and BT WPC80. Based on bleaching efficacy and flavor, BT may be an alternative to chemical bleaching of fluid whey.}, number={7}, journal={JOURNAL OF FOOD SCIENCE}, author={Kang, E. J. and Smith, T. J. and Drake, M. A.}, year={2012}, month={Jul}, pages={C818–C823} } @article{campbell_kang_bastian_drake_2012, title={The use of lactoperoxidase for the bleaching of fluid whey}, volume={95}, ISSN={["0022-0302"]}, DOI={10.3168/jds.2011-5166}, abstractNote={Lactoperoxidase (LP) is the second most abundant enzyme in bovine milk and has been used in conjunction with hydrogen peroxide (H₂O₂) and thiocyanate (SCN⁻) to work as an antimicrobial in raw milk where pasteurization is not feasible. Thiocyanate is naturally present and the lactoperoxidase system purportedly can be used to bleach dairy products, such as whey, with the addition of very little H₂O₂ to the system. This study had 3 objectives: 1) to quantify the amount of H₂O₂ necessary for bleaching of fluid whey using the LP system, 2) to monitor LP activity from raw milk through manufacture of liquid whey, and 3) to compare the flavor of whey protein concentrate 80% (WPC80) bleached by the LP system to that bleached by traditional H₂O₂ bleaching. Cheddar cheese whey with annatto (15 mL of annatto/454 kg of milk, annatto with 3% wt/vol norbixin content) was manufactured using a standard Cheddar cheesemaking procedure. Various levels of H₂O₂ (5-100 mg/kg) were added to fluid whey to determine the optimum concentration of H₂O₂ for LP activity, which was measured using an established colorimetric method. In subsequent experiments, fat-separated whey was bleached for 1h with 250 mg of H₂O₂/kg (traditional) or 20 mg of H₂O₂/kg (LP system). The WPC80 was manufactured from whey bleached with 250 mg of H₂O₂/kg or 20mg of H₂O₂/kg. All samples were subjected to color analysis (Hunter color values and norbixin extraction) and proximate analysis (fat, protein, and moisture). Sensory and instrumental volatile analyses were conducted on WPC80. Optimal LP bleaching in fluid whey occurred with the addition of 20mg of H₂O₂/kg. Bleaching of fluid whey at either 35 or 50°C for 1 h with LP resulted in > 99% norbixin destruction compared with 32 or 47% destruction from bleaching with 250 mg of H₂O₂/kg, at 35 or 50°C for 1 h, respectively. Higher aroma intensity and increased lipid oxidation compounds were documented in WPC80 from bleached whey compared with WPC80 from unbleached whey. Monitoring of LP activity throughout cheese and whey manufacture showed that LP activity sharply decreased after 30 min of bleaching (17.01 ± 1.4 to < 1 U/mL), suggesting that sufficient bleaching takes place in a very short amount of time. Lactoperoxidase averaged 13.01 ± 0.7 U/mL in unpasteurized, fat-separated liquid whey and 138.6 ± 11.9 U/mL in concentrated retentate (11% solids). Lactoperoxidase may be a viable alternative for chemical whey bleaching.}, number={6}, journal={JOURNAL OF DAIRY SCIENCE}, author={Campbell, R. E. and Kang, E. J. and Bastian, E. and Drake, M. A.}, year={2012}, month={Jun}, pages={2882–2890} } @article{kang_campbell_bastian_drake_2010, title={Invited review: Annatto usage and bleaching in dairy foods}, volume={93}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2010-3190}, abstractNote={Annatto is a yellow/orange colorant that is widely used in the food industry, particularly in the dairy industry. Annatto, consisting of the carotenoids bixin and norbixin, is most commonly added to produce orange cheese, such as Cheddar, to achieve a consistent color over seasonal changes. This colorant is not all retained in the cheese, and thus a percentage remains in the whey, which is highly undesirable. As a result, whey is often bleached. Hydrogen peroxide and benzoyl peroxide are the 2 bleaching agents currently approved for bleaching whey in the United States. Recent studies have highlighted the negative effect of bleaching on whey flavor while concurrently there is a dearth of current studies on bleaching conditions and efficacy. Recent international mandates have placed additional concern on the use of benzoyl peroxide as a bleaching agent. This review discusses the advantages, disadvantages, regulatory concerns, flavor implications, and optimal usage conditions of 2 widely used bleaching agents, hydrogen peroxide and benzoyl peroxide, as well as a few alternative methods including lipoxygenase, peroxidase, and lactoperoxidase systems.}, number={9}, journal={JOURNAL OF DAIRY SCIENCE}, author={Kang, E. J. and Campbell, R. E. and Bastian, E. and Drake, M. A.}, year={2010}, month={Sep}, pages={3891–3901} } @article{croissant_kang_campbell_bastian_drake_2009, title={The effect of bleaching agent on the flavor of liquid whey and whey protein concentrate}, volume={92}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2009-2535}, abstractNote={The increasing use and demand for whey protein as an ingredient requires a bland-tasting, neutral-colored final product. The bleaching of colored Cheddar whey is necessary to achieve this goal. Currently, hydrogen peroxide (HP) and benzoyl peroxide (BPO) are utilized for bleaching liquid whey before spray drying. There is no current information on the effect of the bleaching process on the flavor of spray-dried whey protein concentrate (WPC). The objective of this study was to characterize the effect of bleaching on the flavor of liquid and spray-dried Cheddar whey. Cheddar cheeses colored with water-soluble annatto were manufactured in duplicate. Four bleaching treatments (HP, 250 and 500 mg/kg and BPO, 10 and 20 mg/kg) were applied to liquid whey for 1.5 h at 60 degrees C followed by cooling to 5 degrees C. A control whey with no bleach was also evaluated. Flavor of the liquid wheys was evaluated by sensory and instrumental volatile analysis. One HP treatment and one BPO treatment were subsequently selected and incorporated into liquid whey along with an unbleached control that was processed into spray-dried WPC. These trials were conducted in triplicate. The WPC were evaluated by sensory and instrumental analyses as well as color and proximate analyses. The HP-bleached liquid whey and WPC contained higher concentrations of oxidation reaction products, including the compounds heptanal, hexanal, octanal, and nonanal, compared with unbleached or BPO-bleached liquid whey or WPC. The HP products were higher in overall oxidation products compared with BPO samples. The HP liquid whey and WPC were higher in fatty and cardboard flavors compared with the control or BPO samples. Hunter CIE Lab color values (L*, a*, b*) of WPC powders were distinct on all 3 color scale parameters, with HP-bleached WPC having the highest L* values. Hydrogen peroxide resulted in a whiter WPC and higher off-flavor intensities; however, there was no difference in norbixin recovery between HP and BPO. These results indicate that the bleaching of liquid whey may affect the flavor of WPC and that the type of bleaching agent used may affect WPC flavor.}, number={12}, journal={JOURNAL OF DAIRY SCIENCE}, author={Croissant, A. E. and Kang, E. J. and Campbell, R. E. and Bastian, E. and Drake, M. A.}, year={2009}, month={Dec}, pages={5917–5927} }