@article{burris_makarem_slabaugh_chaves_pierce_lee_kiemle_kwansa_singh_yingling_et al._2021, title={Phenotypic effects of changes in the FTVTxK region of an Arabidopsis secondary wall cellulose synthase compared with results from analogous mutations in other isoforms}, volume={5}, ISSN={["2475-4455"]}, url={https://doi.org/10.1002/pld3.335}, DOI={10.1002/pld3.335}, abstractNote={Abstract}, number={8}, journal={PLANT DIRECT}, publisher={Wiley}, author={Burris, Jason N. and Makarem, Mohamadamin and Slabaugh, Erin and Chaves, Arielle and Pierce, Ethan T. and Lee, Jongcheol and Kiemle, Sarah N. and Kwansa, Albert L. and Singh, Abhishek and Yingling, Yaroslava G. and et al.}, year={2021}, month={Aug} } @article{pierce_graham_stiff_osborne_haigler_2019, title={Cultures of Gossypium barbadense cotton ovules offer insights into the microtubule-mediated control of fiber cell expansion}, volume={249}, ISSN={0032-0935 1432-2048}, url={http://dx.doi.org/10.1007/s00425-019-03106-5}, DOI={10.1007/s00425-019-03106-5}, abstractNote={A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex. These multiple growth modes represent an interesting difference compared to classical tip-growing cells that needs to be explored further. In vitro ovule culture enables experimental analysis of the controls of cotton fiber development in commonly grown Gossypium hirsutum cotton, but, previously, there was no equivalent system for G. barbadense, which produces higher quality cotton fiber. Here, we describe: (a) how to culture the ovules of G. barbadense successfully, and (b) the results of an in vitro experiment comparing the role of microtubules in controlling cell expansion in different zones near the apex of three types of cotton fiber tips. Adding the common herbicide fluridone, 1-Methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone, to the medium supported G. barbadense ovule culture, with positive impacts on the number of useful ovules and fiber length. The effect is potentially mediated through inhibited synthesis of abscisic acid, which antagonized the positive effects of fluridone. Fiber development was perturbed by adding colchicine, a microtubule antagonist, to ovules of G. barbadense and G. hirsutum cultured 2 days after flowering. The results supported the zonal control of cell expansion in one type of G. hirsutum fiber tip and highlighted differences in the role of microtubules in modulating cell expansion between three types of cotton fiber tips.}, number={5}, journal={Planta}, publisher={Society for Mining, Metallurgy and Exploration Inc.}, author={Pierce, Ethan T. and Graham, Benjamin P. and Stiff, Michael R. and Osborne, Jason A. and Haigler, Candace H.}, year={2019}, month={Feb}, pages={1551–1563} }