@article{milton_draughn_bobay_stowe_olson_feldmann_thompson_myers_santoro_kearns_et al._2020, title={The Solution Structures and Interaction of SinR and SinI: Elucidating the Mechanism of Action of the Master Regulator Switch for Biofilm Formation in Bacillus subtilis}, volume={432}, ISSN={["1089-8638"]}, DOI={10.1016/j.jmb.2019.08.019}, abstractNote={Bacteria have developed numerous protection strategies to ensure survival in harsh environments, with perhaps the most robust method being the formation of a protective biofilm. In biofilms, bacterial cells are embedded within a matrix that is composed of a complex mixture of polysaccharides, proteins, and DNA. The gram-positive bacterium Bacillus subtilis has become a model organism for studying regulatory networks directing biofilm formation. The phenotypic transition from a planktonic to biofilm state is regulated by the activity of the transcriptional repressor, SinR, and its inactivation by its primary antagonist, SinI. In this work, we present the first full-length structural model of tetrameric SinR using a hybrid approach combining high-resolution solution nuclear magnetic resonance (NMR), chemical cross-linking, mass spectrometry, and molecular docking. We also present the solution NMR structure of the antagonist SinI dimer and probe the mechanism behind the SinR-SinI interaction using a combination of biochemical and biophysical techniques. As a result of these findings, we propose that SinI utilizes a residue replacement mechanism to block SinR multimerization, resulting in diminished DNA binding and concomitant decreased repressor activity. Finally, we provide an evidence-based mechanism that confirms how disruption of the SinR tetramer by SinI regulates gene expression.}, number={2}, journal={JOURNAL OF MOLECULAR BIOLOGY}, author={Milton, Morgan E. and Draughn, G. Logan and Bobay, Benjamin G. and Stowe, Sean D. and Olson, Andrew L. and Feldmann, Erik A. and Thompson, Richele J. and Myers, Katherine H. and Santoro, Michael T. and Kearns, Daniel B. and et al.}, year={2020}, month={Jan}, pages={343–357} } @article{draughn_allen_routh_stone_kirker_boegli_schuchman_linder_baynes_james_et al._2017, title={Evaluation of a 2-aminoimidazole variant as adjuvant treatment for dermal bacterial infections}, volume={11}, journal={Drug Design Development and Therapy}, author={Draughn, G. L. and Allen, C. L. and Routh, P. A. and Stone, M. R. and Kirker, K. R. and Boegli, A. and Schuchman, R. M. and Linder, K. E. and Baynes, R. E. and James, G. and et al.}, year={2017}, pages={153–162} } @article{stowe_thompson_peng_su_blackledge_draughn_coe_johannes_lapham_mackenzie_et al._2015, title={Membrane-Permeabilizing Activity of Reverse-Amide 2-Aminoimidazole Antibiofilm Agents Against Acinetobacter baumannii}, volume={12}, ISSN={["1875-5704"]}, DOI={10.2174/1567201811666140924125740}, abstractNote={Acinetobacter baumannii has quickly become one of the most insidious and prevalent nosocomial infections. Recently, the reverse-amide class of 2-aminoimidazole compounds (RA-2AI) was found both to prevent A. baumannii biofilm formation and also to disperse preexisting formations, putatively through interactions with cytosolic response regulators. Here we focus on how this class of antibiofilm agent traverses cellular membranes. Following the discovery of dosage-dependent growth rate changes, the cellular effects of RA-2AI were investigated using a combination of molecular assays and microscopic techniques. It was found that RA-2AI exposure has measureable effects on the bacterial membranes, resulting in a period of increased permeability and visible structural aberrations. Based on these results, we propose a model that describes how the structure of RA-2AI allows it to insert itself into and disrupt the fluidity of the membrane, creating an opportunity for increased molecular permeability.}, number={2}, journal={CURRENT DRUG DELIVERY}, author={Stowe, Sean D. and Thompson, Richele J. and Peng, Lingling and Su, Zhaoming and Blackledge, Meghan S. and Draughn, G. Logan and Coe, William H. and Johannes, Eva and Lapham, Valerie K. and Mackenzie, John and et al.}, year={2015}, pages={223–230} }