Glenn Walker Yao, M., Walker, G., & Gamcsik, M. P. (2023, July 5). Assessing MTT and sulforhodamine B cell proliferation assays under multiple oxygen environments. CYTOTECHNOLOGY. https://doi.org/10.1007/s10616-023-00584-0 Yao, M., Walker, G., & Gamcsik, M. P. (2021). A multiwell plate-based system for toxicity screening under multiple static or cycling oxygen environments. SCIENTIFIC REPORTS, 11(1). https://doi.org/10.1038/s41598-021-83579-1 Rich, M., Mohd, O., Ligler, F. S., & Walker, G. M. (2019). Characterization of glass frit capillary pumps for microfluidic devices. MICROFLUIDICS AND NANOFLUIDICS, 23(5). https://doi.org/10.1007/s10404-019-2238-6 Yao, M., Rabbani, Z. N., Sattler, T., Nguyen, K. G., Zaharoff, D. A., Walker, G., & Gamcsik, M. P. (2019). Flow-Encoded Oxygen Control to Track the Time-Dependence of Molecular Changes Induced by Static or Cycling Hypoxia. ANALYTICAL CHEMISTRY, 91(23), 15032–15039. https://doi.org/10.1021/acs.analchem.9b03709 Sotoudegan, M. S., Mohd, O., Ligler, F. S., & Walker, G. M. (2019). Paper-based passive pumps to generate controllable whole blood flow through microfluidic devices. LAB ON A CHIP, 19(22), 3787–3795. https://doi.org/10.1039/c9lc00822e Yao, M., Sattler, T., Rabbani, Z. N., Pulliam, T., Walker, G., & Gamcsik, M. P. (2018). Mixing and delivery of multiple controlled oxygen environments to a single multiwell culture plate. AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 315(5), C766–C775. https://doi.org/10.1152/ajpcell.00276.2018 Cummins, B. M., Chinthapatla, R., Lenin, B., Ligler, F. S., & Walker, G. M. (2017). Modular pumps as programmable hydraulic batteries for microfluidic devices. TECHNOLOGY, 5(1), 21–30. https://doi.org/10.1142/s2339547817200011 Cummins, B. M., Chinthapatla, R., Ligler, F. S., & Walker, G. M. (2017). Time-Dependent Model for Fluid Flow in Porous Materials with Multiple Pore Sizes. Analytical Chemistry, 89(8), 4377–4381. https://doi.org/10.1021/acs.analchem.6b04717 Ye, Y., Yu, J., Wang, C., Nguyen, N.-Y., Walker, G. M., Buse, J. B., & Gu, Z. (2016). Drug Delivery: Microneedles Integrated with Pancreatic Cells and Synthetic Glucose-Signal Amplifiers for Smart Insulin Delivery (Adv. Mater. 16/2016). Advanced Materials, 28(16), 3223–3223. https://doi.org/10.1002/ADMA.201670112 Murray, I., Walker, G., & Bereman, M. S. (2016). Improving the analytical performance and versatility of paper spray mass spectrometry via paper microfluidics. ANALYST, 141(13), 4065–4073. https://doi.org/10.1039/c6an00649c Ye, Y., Yu, J., Wang, C., Nguyen, N.-Y., Walker, G. M., Buse, J. B., & Gu, Z. (2016). Microneedles Integrated with Pancreatic Cells and Synthetic Glucose-Signal Amplifiers for Smart Insulin Delivery. Advanced Materials, 28(16), 3115–3121. https://doi.org/10.1002/ADMA.201506025 Cummins, B. M., Ligler, F. S., & Walker, G. M. (2016). Point-of-care diagnostics for niche applications. Biotechnology Advances, 34(3), 161–176. https://doi.org/10.1016/j.biotechadv.2016.01.005 Permana, S., Grant, E., Walker, G. M., & Yoder, J. A. (2016). [Review of Review of Automated Microinjection Systems for Single Cells in the Embryogenesis Stage]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 21(5), 2391–2404. https://doi.org/10.1109/tmech.2016.2574871 Pacardo, D. B., Neupane, B., Wang, G., Gu, Z., Walker, G. M., & Ligler, F. S. (2015). A temperature microsensor for measuring laser-induced heating in gold nanorods. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 407(3), 719–725. https://doi.org/10.1007/s00216-014-8222-9 Jiang, X., Jeffries, R. E., Acosta, M. A., Tikunov, A. P., Macdonald, J. M., Walker, G. M., & Gamcsik, M. P. (2015). Biocompatibility of Tygon® tubing in microfluidic cell culture. Biomedical Microdevices, 17(1). https://doi.org/10.1007/S10544-015-9938-9 Vutha, A. K., Davaji, B., Lee, C. H., & Walker, G. M. (2014). A microfluidic device for thermal particle detection. Microfluidics and Nanofluidics, 17(5), 871–878. https://doi.org/10.1007/S10404-014-1369-Z Acosta, M. A., Jiang, X., Huang, P.-K., Cutler, K. B., Grant, C. S., Walker, G. M., & Gamcsik, M. P. (2014). A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia. Biomicrofluidics, 8(5), 054117. https://doi.org/10.1063/1.4898788 McPherson, A. L., & Walker, G. M. (2012). A photo-defined membrane for precisely patterned cellular and microparticle arrays. AIP Advances, 2(1), 012153. https://doi.org/10.1063/1.3690966 Dong, H., & Walker, G. M. (2012). Adjustable stiffness tubes via thermal modulation of a low melting point polymer. Smart Materials and Structures, 21(4), 042001. https://doi.org/10.1088/0964-1726/21/4/042001 SooHoo, J. R., Herr, J. K., Ramsey, J. M., & Walker, G. M. (2012). Microfluidic Cytometer for the Characterization of Cell Lysis. ANALYTICAL CHEMISTRY, 84(5), 2195–2201. https://doi.org/10.1021/ac202461h Walker, G. M. (2011, June). PENSIONING OFF PIPETTES: Pensioning off pipettes. NATURE CHEMISTRY, Vol. 3, pp. 428–429. https://doi.org/10.1038/nchem.1060 McPherson, A. L., & Walker, G. M. (2010). A microfluidic passive pumping Coulter counter. MICROFLUIDICS AND NANOFLUIDICS, 9(4-5), 897–904. https://doi.org/10.1007/s10404-010-0609-0 Dong, H., & Walker, G. M. (2010). Adjustable-Stiffness Films via Integrated Thermal Modulation. MACROMOLECULAR MATERIALS AND ENGINEERING, 295(8), 735–741. https://doi.org/10.1002/mame.201000097 Adrian T. O'Neill, Monteiro-Riviere, N. A., & Walker, G. M. (2009). Microfabricated curtains for controlled cell seeding in high throughput microfluidic systems. LAB ON A CHIP, 9(12), 1756–1762. https://doi.org/10.1039/b819622b SooHoo, J. R., & Walker, G. M. (2009). Microfluidic aqueous two phase system for leukocyte concentration from whole blood. BIOMEDICAL MICRODEVICES, 11(2), 323–329. https://doi.org/10.1007/s10544-008-9238-8 Adrian T. O'Neill, Monteiro-Riviere, N. A., & Walker, G. M. (2008). Characterization of microfluidic human epidermal keratinocyte culture. CYTOTECHNOLOGY, 56(3), 197–207. https://doi.org/10.1007/s10616-008-9149-9 Walker, G. M., Monteiro-Riviere, N., Rouse, J., & Adrian T. O'Neill. (2007). A linear dilution microfluidic device for cytotoxicity assays. LAB ON A CHIP, 7(2), 226–232. https://doi.org/10.1039/b608990a O'Neill, A. T., Monteiro-Riviere, N. A., & Walker, G. M. (2006). A serial dilution microfluidic device for cytotoxicity assays. In 28th annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2836–2839). Piscataway, NJ: IEEE. Sai, J., Walker, G., Wikswo, J., & Richmond, A. (2006). The IL Sequence in the LLKIL Motif in CXCR2 Is Required for Full Ligand-induced Activation of Erk, Akt, and Chemotaxis in HL60 Cells. Journal of Biological Chemistry, 281(47), 35931–35941. https://doi.org/10.1074/jbc.M605883200 Walker, G. M., Sai, J., Richmond, A., Stremler, M., Chung, C. Y., & Wikswo, J. P. (2005). Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab on a Chip, 5(6), 611. https://doi.org/10.1039/b417245k Walker, G., Ozers, M. S., & Beebe, D. J. (2004). Cell infection within a microfluidic device using virus gradients. Sensors and Actuators B: Chemical, 98(2-3), 347–355. https://doi.org/10.1016/j.snb.2003.10.014 Walker, G. M., Zeringue, H. C., & Beebe, D. J. (2004). Microenvironment design considerations for cellular scale studies. Lab on a Chip, 4(2), 91. https://doi.org/10.1039/b311214d Rocheleau, J. V., Walker, G. M., Head, W. S., McGuinness, O. P., & Piston, D. W. (2004). Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proceedings of the National Academy of Sciences, 101(35), 12899–12903. https://doi.org/10.1073/pnas.0405149101