@article{daubert_hill_gotsch_gremaud_ovental_williams_oldham_parsons_2017, title={Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition}, volume={9}, ISSN={["1944-8244"]}, DOI={10.1021/acsami.6b13571}, abstractNote={Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al2O3, TiO2, ZnO, HfO2, and ZrO2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al2O3 or HfO2 provided the highest level of initial corrosion protection, but films of HfO2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO2 or ZrO2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.}, number={4}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Daubert, James S. and Hill, Grant T. and Gotsch, Hannah N. and Gremaud, Antoine P. and Ovental, Jennifer S. and Williams, Philip S. and Oldham, Christopher J. and Parsons, Gregory N.}, year={2017}, month={Feb}, pages={4192–4201} } @article{daubert_lewis_gotsch_mundy_monroe_dickey_losego_parsons_2015, title={Effect of Meso- and Micro-Porosity in Carbon Electrodes on Atomic Layer Deposition of Pseudocapacitive V2O5 for High Performance Supercapacitors}, volume={27}, ISSN={0897-4756 1520-5002}, url={http://dx.doi.org/10.1021/acs.chemmater.5b01602}, DOI={10.1021/acs.chemmater.5b01602}, abstractNote={Atomic layer deposition (ALD) of vanadium oxide is a viable means to add pseudocapacitive layers to porous carbon electrodes. Two commercial activated carbon materials with different surface areas and pore structures were acid treated and coated by V2O5 ALD using vanadium triisopropoxide and water at 150 °C. The V2O5 ALD process was characterized at various temperatures to confirm saturated ALD growth conditions. Capacitance and electrochemical impedance analysis of subsequently constructed electrochemical capacitors (ECs) showed improved charge storage for the ALD coated electrodes, but the extent of improvement depended on initial pore structure. The ALD of V2O5 onto mesoporous carbon increased the capacitance by up to 46% after 75 ALD cycles and obtained a maximum pseudocapacitance of 540 F/g(V2O5) after 25 ALD cycles, while maintaining low electrical resistance, high columbic efficiency, and a high cycle life. However, adding V2O5 ALD to microporous carbons with pore diameters of <11 A showed far less...}, number={19}, journal={Chemistry of Materials}, publisher={American Chemical Society (ACS)}, author={Daubert, James S. and Lewis, Neal P. and Gotsch, Hannah N. and Mundy, J. Zachary and Monroe, David N. and Dickey, Elizabeth C. and Losego, Mark D. and Parsons, Gregory N.}, year={2015}, month={Sep}, pages={6524–6534} }