Haoqi Ni

College of Engineering

2018 article

An Intelligent and Hybrid Weighted Fuzzy Time Series Model Based on Empirical Mode Decomposition for Financial Markets Forecasting

ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS (ICDM 2018), Vol. 10933, pp. 104–118.

By: R. Yang n, J. He*, M. Xu n, H. Ni n, P. Jones n & N. Samatova*

Contributors: R. Yang n, J. He*, M. Xu n, H. Ni n, P. Jones n & N. Samatova*

author keywords: EMD; Weighted fuzzy time series; Human learning optimization algorithm; Financial markets forecasting
TL;DR: A new Intelligent Hybrid Weighted Fuzzy (IHWF) time series model to improve forecasting accuracy in financial markets, which are complex nonlinear time-sensitive systems, influenced by many factors. (via Semantic Scholar)
Sources: Web Of Science, ORCID
Added: June 17, 2019

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.