Works (11)

Updated: July 11th, 2023 21:16

2021 article

Fox Cluster determinants for iron biooxidation in the extremely thermoacidophilic Sulfolobaceae

Counts, J. A., Vitko, N. P., & Kelly, R. M. (2021, August 30). ENVIRONMENTAL MICROBIOLOGY, Vol. 8.

By: J. Counts n, N. Vitko n & R. Kelly n

MeSH headings : Animals; Archaeal Proteins / genetics; Archaeal Proteins / metabolism; Iron / metabolism; Phylogeny; Proteomics; Sulfolobaceae / genetics
TL;DR: Proteomic analysis here of iron-oxidizing membranes from M. sedula indicates that FoxA2 and FoxB and FoxC are essential and few homologs exist for FoxC or for most other Fox Cluster proteins. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: September 7, 2021

2020 journal article

Genome Sequences of Five Type Strain Members of the Archaeal Family Sulfolobaceae, Acidianus ambivalens, Acidianus infernus, Stygiolobus azoricus, Sulfuracidifex metallicus, and Sulfurisphaera ohwakuensis

MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 9(11).

By: J. Counts n, N. Vitko n & R. Kelly n

TL;DR: Five genomes from the polyextremophilic (optimal temperature of >65°C and optimal pH of <3.5) archaeal family Sulfolobaceae are presented, greatly expanding order-wide genomic diversity. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: April 6, 2020

2020 journal article

Life in hot acid: a genome‐based reassessment of the archaeal order Sulfolobales

Environmental Microbiology, 23(7), 3568–3584.

By: J. Counts n, D. Willard n & R. Kelly n

MeSH headings : Acidianus; Archaea / genetics; Hot Springs; Oxidation-Reduction; Phylogeny; Sulfolobaceae / genetics; Sulfolobales
TL;DR: Despite the presence of facultative anaerobes and one confirmed obligate anaerobe, oxidase complexes are prevalent in many species, suggesting a key role for oxygen among the Sulfolobales. (via Semantic Scholar)
UN Sustainable Development Goal Categories
15. Life on Land (Web of Science)
Sources: Web Of Science, Crossref, NC State University Libraries
Added: September 21, 2020

2020 journal article

The biology of thermoacidophilic archaea from the order Sulfolobales

FEMS Microbiology Reviews, 45(4).

By: A. Lewis n, A. Recalde*, C. Bräsen*, J. Counts n, P. Nussbaum*, J. Bost*, L. Schocke*, L. Shen* ...

author keywords: Archaea; Thermoacidophiles; Sulfolobales
MeSH headings : Archaea / genetics; Biology; Iron; Sulfolobales
TL;DR: The nuances of the thermoacidophilic lifestyle of the Sulfolobales are discussed, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes, and physiological attributes together with how these characteristics make thermo Acidophiles ideal platforms for specialized industrial processes. (via Semantic Scholar)
Sources: Web Of Science, Crossref, NC State University Libraries
Added: July 14, 2021

2019 journal article

Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilic Sulfolobales

ENVIRONMENTAL MICROBIOLOGY, 21(10), 3696–3710.

By: B. Zeldes n, A. Loder, J. Counts n, M. Haque n, K. Widney n, L. Keller n, S. Albers*, R. Kelly n

MeSH headings : Autotrophic Processes; Chemoautotrophic Growth; Oxidation-Reduction; Oxidoreductases / metabolism; Sulfolobales / metabolism; Sulfur / metabolism; Thiosulfates / metabolism
TL;DR: Comparative transcriptomic analyses of Acidianus brierleyi, a chemolithoautotrophic sulfur oxidizer, and S. acidocaldarius DSM639 showed that while both share a strong transcriptional response to elemental sulfur, both failed to up-regulate key 3-HP/4-HB cycle genes used by A. briersleyi to drive chemolithOautotrophy. (via Semantic Scholar)
UN Sustainable Development Goal Categories
15. Life on Land (Web of Science)
Sources: Web Of Science, NC State University Libraries
Added: August 12, 2019

2018 review

Biotechnology of extremely thermophilic archaea

[Review of ]. FEMS MICROBIOLOGY REVIEWS, 42(5), 543–578.

By: C. Straub n, J. Counts n, D. Nguyen*, C. Wu*, B. Zeldes n, J. Crosby n, J. Conway n, J. Otten n ...

author keywords: extremely thermophilic archaea; biotechnology; biocatalysis; biooxidation
MeSH headings : Archaea / genetics; Archaea / physiology; Biotechnology / trends; Hot Temperature; Industrial Microbiology / trends; Metabolic Engineering / trends
TL;DR: There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures. (via Semantic Scholar)
UN Sustainable Development Goal Categories
15. Life on Land (Web of Science)
Sources: Web Of Science, NC State University Libraries
Added: November 19, 2018

2018 journal article

Complete Genome Sequences of Extremely Thermoacidophilic Metal-Mobilizing Type Strain Members of the Archaeal Family Sulfolobaceae, Acidianus brierleyi DSM-1651, Acidianus sulfidivorans DSM-18786, and Metallosphaera hakonensis DSM-7519

MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 7(2).

By: J. Counts n, N. Vitko n & R. Kelly n

TL;DR: Three closed genomes from two currently defined genera within the family Sulfolobaceae are reported, namely, Acidianus brierleyi DSM-1651T,Acidianus sulfidivorans DSM-18786T, and Metallosphaera hakonensis DSM-7519T. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: December 31, 2018

2018 journal article

Extremely Thermoacidophilic Metallosphaera Species Mediate Mobilization and Oxidation of Vanadium and Molybdenum Oxides

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 85(5).

By: G. Wheaton n, N. Vitko n, J. Counts n, J. Dulkis n, I. Podolsky n, A. Mukherjee n, R. Kelly n

author keywords: Metallosphaera; biomining; extreme thermoacidophily; metal biooxidation; molybdenum; vanadium
MeSH headings : Archaeal Proteins / genetics; Copper / metabolism; Ferric Compounds / metabolism; Gene Expression Profiling; Genome, Archaeal; Hot Temperature; Hydrogen-Ion Concentration; Molybdenum / metabolism; Oxidation-Reduction; Oxides / metabolism; Oxygen; Sulfolobaceae / genetics; Sulfolobaceae / metabolism; Sulfur Compounds / metabolism; Transcriptome; Uranium / metabolism; Vanadium / metabolism
TL;DR: Results suggest that direct oxidation of V and Mo occurs, in addition to Fe-mediated oxidation, such that both direct and indirect mechanisms are involved in the mobilization of redox-active metals by Metallosphaera species. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: March 11, 2019

2017 review

Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms

[Review of ]. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 9(3).

By: J. Counts n, B. Zeldes n, L. Lee n, C. Straub n, M. Adams* & R. Kelly n

MeSH headings : Biocatalysis; Carbohydrate Metabolism; Carbon Dioxide / metabolism; Glycolysis; Metabolic Engineering; Metals / chemistry; Metals / metabolism; Sulfolobales / metabolism; Sulfur / metabolism; Thermoanaerobacter / metabolism; Thermococcales / metabolism; Thermus / metabolism
TL;DR: The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. (via Semantic Scholar)
UN Sustainable Development Goal Categories
14. Life Below Water (OpenAlex)
15. Life on Land (Web of Science)
Sources: Web Of Science, NC State University Libraries
Added: August 6, 2018

2017 journal article

VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae

ENVIRONMENTAL MICROBIOLOGY, 19(7), 2831–2842.

By: A. Mukherjee n, G. Wheaton n, J. Counts n, B. Ijeomah n, J. Desai n & R. Kelly n

MeSH headings : Archaeal Proteins / genetics; Archaeal Proteins / metabolism; Bacterial Toxins / genetics; Bacterial Toxins / metabolism; Gene Expression Regulation, Bacterial / physiology; RNA Stability / physiology; Sulfolobaceae / genetics; Sulfolobaceae / growth & development; Sulfolobaceae / metabolism; Transcriptome; Uranium / metabolism
TL;DR: M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: August 6, 2018

2015 review

The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles

[Review of ]. MINERALS, 5(3), 397–451.

By: G. Wheaton n, J. Counts n, A. Mukherjee n, J. Kruh n & R. Kelly n

author keywords: extreme thermoacidophiles; bioleaching; heavy metal resistance; heavy metal biooxidation; archaea
TL;DR: Here, extreme thermoacidophiles are examined from the perspectives of biodiversity, heavy metal biooxidation, metal resistance mechanisms, microbe-solid interactions, and application of these archaea in biomining operations. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: August 6, 2018

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.